6-Fluoro-1,4,5,6-tetradeoxy-1,5-imino-D-lyxitol (15): Hydrogenolysis of 11 resulted in a mixture of 14 (52% yield) and 15 (11% yield) after column chromatography on silica gel (PrOH/H₂O/NH₄OH, 14:1:1); ¹H NMR ($(D_2O) \delta$ 1.50 (app q, J = 12.0, 1 H, H-3a), 1.66 (app dt, J = 3.8, 12.4, 1 H, H-3e), 2.69 (dd, J = 1.3, 14.3, 1 H, H-6a), 2.91–2.83 (dddd, J = 3.0, 5.7, 12.2, 25.3, 1 H, H-2), 3.03 (dd, J = 2.8, 14.3, 1 H, H-6e), 3.80 (ddd, J = 3.0, 7.7, 11.6, 1 H, H-4), 3.84–3.81 (m, 1 H, H-5), 4.37 (ddd, J = 5.7, 9.7, 47.2, 1 H, H-1), 4.46 (ddd, J = 3.0, 9.7, 47.2, 1 H, H-1); ¹³C NMR (D₂O) δ 29.4 (C-3), ³J_{C-F} = 5.9), 49.2 (C-6), 54.6 (C-2, $J_{C-F} = 18.1$), 67.6, 69.8 (C-4, C-5), 87.00 (C-1, ${}^{1}J_{C-F} = 165.3$); HRMS (M - H)⁺ calcd 150.0930, found 150.0923.

(2S)-Methyl-1,2,5-trideoxy-1,5-imino-D-ribitol (16): 90% yield; ¹H NMR (D₂O) δ 0.91 (d, J = 7.0, 3 H, CH₃), 1.77-1.82 (m, 1 H, H-2), 2.45 (t, J = 12.4, 1 H, H-1a), 2.67 (t, J = 11.7, 1 H, H-5a), 2.70 (dd,

J = 4.8, 12.4, 1 H, H-1e), 2.90 (dd, J = 4.6, 11.9, 1 H, H-5e), 3.72 (ddd, $J = 3.0, 5.1, 11.7, 1 \text{ H}, \text{H-4}), 3.85 (\text{br s}, 1 \text{ H}, \text{H-3}); {}^{13}\text{C NMR} (D_2\text{O})$ δ 15.4 (CH₃), 35.5 (C-2), 44.8, 45.7 (C-1, C-5), 67.0, 72.6 (C-3, C-4); HRMS (M - Cs)⁺ calcd 264.0001, found 264.0003.

1,2,5-Trideoxy-1,5-imino-D-erythritol (17): 97% yield; ¹H NMR $(D_2O) \delta 1.51 \text{ (m, 2 H, H-2), } 2.55 \text{ (ddd, } J = 4.8, 7.6, 13.1, 1 H, H-1),$ 2.67 (dd, J = 3.0, 13.4, 1 H, H-5), 2.90 (dd, J = 5.7, 13.4, 1 H, H-5), 2.86-2.96 (m, 1 H, H-1), 3.67 (dt, J = 2.5, 5.9, 1 H, H-4), 3.74 (ddd, J = 3.0, 4.6, 7.6, 1 H, H-3); ¹³C NMR (D₂O) δ 29.9 (C-2), 41.9 (C-1), 48.1 (C-5), 68.8, 69.3 (C-3, C-4); HRMS (M⁺) calcd 117.0790, found 117.0785.

Acknowledgment. This research was supported by the NIH (GM44154).

[Tris(pyrazolyl)hydroborato]magnesium Alkyl Derivatives: **Reactivity Studies**

Runyu Han and Gerard Parkin*

Contribution from the Department of Chemistry, Columbia University, New York, New York 10027. Received July 1, 1991

Abstract: The reactivity of a series of 4-coordinate [tris(pyrazolyl)hydroborato]magnesium alkyl derivatives, $[\eta^3$ -HB(3-Bu¹pz)₃]MgR and $\{\eta^3 - HB(3, 5 - Me_2pz)_3\}MgR$ $(3 - Bu^tpz = 3 - C_3N_2Bu^tH_2, 3, 5 - Me_2pz = 3, 5 - C_3N_2Me_2H; R = CH_3, CH_2CH_3, (CH_2)_3CH_3, CH_2CH_3, (CH_2)_3CH_3, CH_2CH_3, CH_2CH_3,$ $CH(CH_3)_2$, $C(CH_3)_3$, $CH=CH_2$, C_6H_5 , CH_2SiMe_3 , has been investigated. The complexes $\{\eta^3 - HB(3, 5 - Me_2pz)_3\}MgR$ undergo ligand redistribution reactions, analogous to the Schlenk equilibrium, to give the 6-coordinate sandwich complex $\{\eta^3$ -HB-(3,5-Me2pz)32Mg. In contrast, the 4-coordinate magnesium alkyl derivatives supported by the more sterically demanding tris(3-tert-butylpyrazolyl)hydroborato ligand, $\{\eta^3-HB(3-Bu^{\dagger}pz)\}$ MgR, are stable with respect to the formation of $\{\eta^3-HB(3-Bu^{\dagger}pz)\}$ Buⁱpz)₃]₂Mg. The alkyl complexes { η^3 -HB(3-Buⁱpz)₃}MgR are useful precursors for a variety of other 4-coordinate complexes, including { η^3 -HB(3-Buⁱpz)₃}MgX (X = C=CC₆H₅, C=CSiMe₃, OEt, OPrⁱ, OBuⁱ, OPh, OCH₂SiMe₃, OSiMe₃, OOBuⁱ, NHPh, SH, SCH₃, Cl, Br, I, NCO, NCS). CO₂ inserts into the Mg-C bond of $\{\eta^3$ -HB(3-Bu⁴pz)₃]MgCH₃ to give the η^1 -acetato complex ${\eta^3}$ -HB(3-Bu¹pz)₃/Mg{ η^1 -OC(O)CH₃}. In contrast, the reactions with the ketones CH₃C(O)CH₃ and CH₃C(O)Bu^t do not result in insertion to give the alkoxide derivatives, but preferentially give the enolate complexes $\{\eta^3$ -HB(3-Bu¹pz)_3]Mg[\eta^1-OC(=CH_2)CH_3] and $[\eta^3 - HB(3 - Bu^tpz)_3]Mg[\eta^1 - OC(=CH_2)Bu^t]$, accompanied by the elimination of methane. Insertion of O₂ into the Mg-R bond of the complexes $\{\eta^3$ -HB(3-Bu'pz)_3\}MgR (R = CH₃, CH₂CH₃, CH(CH₃)₂, C(CH₃)₃) results in formation of the alkylperoxo derivatives $\{\eta^3$ -HB(3-Bu'pz)_3\}MgOOR, which have been characterized by the use of ¹⁷O NMR spectroscopy. In contrast, the reaction of the magnesium (trimethylsilyl)methyl complex $\{\eta^3$ -HB(3-Bu^tpz)₃)MgCH₂SiMe₃ with O₂ gives the trimethylsiloxide derivative $\{\eta^3$ -HB(3-Bu'pz)_{3}MgOSiMe_{3} as a result of facile cleavage of the Si-C bond upon autoxidation. The molecular structures of $[\eta^3$ -HB(3,5-Me₂p2)₃]₂Mg and $[\eta^3$ -HB(3-Bu⁺p2)₃]₃MgCl have been determined by X-ray diffraction. $[\eta^3$ -HB(3,5-Me₂p2)₃]₂Mg is triclinic, PI (No. 2), a = 8.837 (3) Å, b = 10.223 (3) Å, c = 10.773 (2) Å, $\alpha = 63.92$ (3)°, $\beta = 85.24$ (2)°, $\gamma = 79.87$ (2)°, V = 860.4 (4) Å³, Z = 1. $\{\eta^3$ -HB(3-Bu⁺p2)₃]MgCl is orthorhombic, Pnma (No. 62), a = 16.048 (7) Å, b = 16.006 (3) Å, c = 9.840 (1) Å, V = 2527 (1) Å³, Z = 4.

Introduction

We have recently reported the syntheses and structures of a series of 4-coordinate organomagnesium complexes $\{\eta^3$ -HB(3- $Bu^{t}pz_{3}MgR$ (A) and $\{\eta^{3}-HB(3,5-Me_{2}pz_{3})MgR$ (B) (3- $Bu^{t}pz =$ $3-C_3N_2Bu'H_2$; 3,5-Me₂pz = 3,5-C₃N₂Me₂H)¹ that are stabilized by coordination of tris(pyrazolyl)hydroborato ligands,² as illustrated in Figure 1.

In contrast to Grignard reagents, which are well-known to (i) exist in solution as a complex mixture of species (e.g., the Schlenk equilibrium) and (ii) exhibit a variety of structures in the solid state,³ the organomagnesium complexes illustrated in Figure 1 exist as well-defined 4-coordinate monomeric complexes both in the solid state and in solution. Furthermore, the solvent-free

[tris(pyrazolyl)hydroborato]magnesium alkyl derivatives are soluble in noncoordinating hydrocarbon solvents (e.g., benzene) and possess valuable spectroscopic handles, in the form of the resonances due to the tris(pyrazolyl)hydroborato ligands, that are ideal for monitoring reactions. Here we report our studies of

Han, R.; Parkin, G. Organometallics 1991, 10, 1010-1020.
 (a) Trofimenko, S. Acc. Chem. Res. 1971, 4, 17-22. (b) Trofimenko, (2) (a) frommenko, S. Acc. Chem. Res. 1571, +, 1722. (b) frommenko, S. Chem. Rev. 1972, 72, 497-509. (c) Trofimenko, S. Prog. Inorg. Chem. 1986, 34, 115-210. (d) Shaver, A. Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, 1987; Vol. 2, pp 245-249. (e) Shaver, A. J. Organomet. Chem. Library 1977, 3, 157-188. (f) Niedenzu, K.; Trofimenko, S. Top. Curr. Chem. 1064, 121, 1-271986, 131, 1-37.

⁽³⁾ The simple model of the Schlenk equilibrium $(2RMgX \Rightarrow R_2Mg + MgX_2)$ for describing the composition of Grignard reagents is complicated by a variety of factors including (i) the formation of complexes of each component with either solvent, reactant, or product, (ii) the formation of dimeric (or higher order) species, and (iii) the presence of ionic species. (a) Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Nonmetallic Sub-stances; Prentice-Hall: New York, 1954. (b) Ashby, E. C. Pure Appl. Chem. **1980**, 52, 545-569. (c) Ashby, E. C. Q. Rev. **1967**, 259-285. (d) Ashby, E. C.; Laemmle, J.; Neumann, H. M. Acc. Chem. Res. **1974**, 7, 272-280. (e) Wakefield, B. J. Pure Appl. Chem. **1966**, 1, 131-156. (f) Toney J.; Stucky, G. D. J. Organomet. Chem. **1971**, 28, 5-20. (g) Ashby, E. C.; Becker, W. E. J. Am. Chem. Soc. **1964**, 86, 4363-4370. (h) Ashby, E. C.; Becker, W. E. J. Am. Chem. Soc. **1968**, 90, 5375-5378. (j) Spek, A. L.; Voorbergen, P.; Schat, G.; Blomberg, C.; Bickelhaupt, F. J. Organomet. Chem. **1974**, 77, 147-151. (k) Schlenk, W.; Schlenk, W., Jr. Ber. **1929**, 62B, 920-924. (l) Evans, W. V.; Pearson, R. J. Am. Chem. Soc. **1942**, 64, 2865-2871. (m) Dessy, R. E.; Handler, G. S. J. Am. Chem. Soc. **1958**, 80, 5824-5826. dimeric (or higher order) species, and (iii) the presence of ionic species. (a)

Figure 1. Monomeric [tris(pyrazolyl)hydroborato]magnesium alkyl complexes.

Figure 2. Molecular structure of $\{\eta^3-HB(3,5-Me_2pz)_3\}_2Mg$.

[tris(pyrazolyl)hydroborato]magnesium alkyl derivatives in order to assess the reactivity of the magnesium-carbon bond in a well-defined 4-coordinate environment.

Results and Discussion

The monomeric [tris(pyrazolyl)hydroborato]magnesium alkyl derivatives { η^3 -HB(3-Bu'pz)_3}MgR and { η^3 -HB(3,5-Me₂pz)₃}MgR (R = CH₃, CH₂CH₃, (CH₂)₃CH₃, CH(CH₃)₂, C(CH₃)₃, CH₂SiMe₃, CH=CH₂, C₆H₅) were obtained as described previously by the metathesis of R₂Mg with M{HB(3,5-R₂pz)₃} (3,5-R₂pz = 3-Bu'pz, 3,5-Me₂pz; M = K, Tl), as shown in eq 1.¹

$$R_{2}Mg + M\{HB(3,5-R_{2}pz)_{3}\} \xrightarrow[(M = K, T])]{} + \frac{-[MR]}{(M = K, T]} + \frac{1}{[M^{3}-HB(3,5-R_{2}pz)_{3}]} MgR (1)$$

The reactivity of the complexes $\{\eta^3$ -HB(3,5-R₂pz)₃}MgR is described below under the general classifications of (i) ligand redistribution, (ii) metathesis, and (iii) insertion reactions.

Ligand Redistribution Reactions. In view of the fact that Grignard reagents exist in solution as a complex mixture of species as a result of facile ligand redistribution reactions, e.g., the Schlenk equilibrium,³ we have investigated the possibility of similar ligand redistribution reactions for the [tris(pyrazolyl)hydroborato]magnesium alkyl complexes, { η^3 -HB(3,5-R₂pz)₃]MgR. Thus, we have observed that although solutions of the tris(3,5-dimethylpyrazolyl)hydroborato derivatives { η^3 -HB(3,5-Me₂pz)₃]MgR (R = CH₃, CH₂CH₃, (CH₂)₃CH₃, CH₂SiMe₃, CH(CH₃)₂, C(CH₃)₃, CH=CH₂, C₆H₅) are stable at room temperature, heating to 80–120 °C results in ligand redistribution and the formation of the 6-coordinate sandwich complex { η^3 -HB(3,5-Me₂pz)₃}₂Mg (eq 2).

The reactions only proceed to ca. 90% completion, presumably arriving at equilibrium. The molecular structure of $\{\eta^3$ -HB(3,5-Me₂pz)₃ $\}_2$ Mg has been determined by X-ray diffraction, as shown in Figure 2. Selected bond lengths and angles are presented in Tables I and II. The two tris(pyrazolyl)hydroborato ligands adopt

Table I. Selected Bond Lengths for $\{\eta^3-HB(3,5-Me_2pz)_3\}_2Mg$ (Å)

Table 1. Selected	Bond Lengths 10	$f(\eta^2 - HB(3, 3 - We_2p_2))$	J_{3}_{2} (A)
Mg-N(12)	2.192 (2)	Mg-N(22)	2.169 (2)
Mg-N(32)	2.197 (3)	Mg-N(12')	2.192 (2)
Mg-N(22')	2.169 (2)	Mg-N(32')	2.197 (3)
N(11)-N(12)	1.375 (3)	N(11)-C(11)	1.353 (3)
N(11)-B	1.547 (4)	N(12)-C(13)	1.341 (3)
N(21)-N(22)	1.375 (3)	N(21)-C(21)	1.353 (3)
N(21)-B	1.544 (4)	N(22)-C(23)	1.337 (4)
N(31)-N(32)	1.375 (3)	N(31)-C(31)	1.348 (5)
N(31)-B	1.543 (4)	N(32)-C(33)	1.340 (5)
C(11)-C(12)	1.368 (4)	C(11)-C(14)	1.505 (4)
C(12)-C(13)	1.386 (4)	C(13) - C(15)	1.496 (4)
C(21)-C(22)	1.355 (5)	C(21)-C(24)	1.494 (4)
C(22)-C(23)	1.383 (4)	C(23)-C(25)	1.493 (5)
C(31)-C(32)	1.370 (5)	C(31)-C(34)	1.497 (5)
C(32)-C(33)	1.376 (6)	C(33)-C(35)	1.499 (4)
Table II. Selected	Bond Angles for	$\pi {\eta^3}-HB(3,5-Me_2pz)$	$_{3}_{2}Mg$ (deg)
N(12)-Mg-N(2	2) 85.6 (1)	N(12)-Mg-N(32) 87.0 (1)
N(22)-Mg-N(3	2) 85.6 (1)	N(12)-Mg-N(12	′) 180.0
N(22)-Mg-N(1	2') 94.4 (1)	N(32)-Mg-N(12	′) 93.0 (1)
N(12)-Mg-N(2	2') 94.4 (1)	N(22)-Mg-N(22	') 180.0
N(32)-Mg-N(2	2') 94.4 (1)	N(12')-Mg-N(22	2') 85.6 (1)
N(12)-Mg-N(3	2') 93.0 (1)	N(22)-Mg-N(32	′) 94.4 (1)
N(32)-Mg-N(3	2') 180.0	N(12')-Mg-N(32	2′) 87.0 (1)
N(22')-Mg-N(32') 85.6 (1)		

a mutually staggered conformation, and the overall coordination geometry about the centrosymmetric magnesium center is trigonally distorted octahedral. $\{n^3$ -HB(3,5-Me₂pz)_3\}_2Mg can also be readily prepared by the reaction of K{HB(3,5-Me₂pz)_3} with MgBr₂. Thus, coordination of two tris(dimethylpyrazolyl)hydroborato ligands to magnesium does not result in particularly excessive steric interactions, which accounts for the facile redistribution reaction described above.

In contrast to the facile formation of $\{\eta^3$ -HB(3,5-Me₂pz)_3\}_2Mg from $\{\eta^3$ -HB(3,5-Me₂pz)₃}MgR, solutions of the tris(3-tert-butylpyrazolyl)hydroborato derivatives { η^3 -HB(3-Bu^tpz)₃}MgR in benzene are thermally stable. For example, solutions of $\{\eta^3$ -HB-(3-Bu^tpz)₃MgCH₃ show no evidence of decomposition after 7 days at 120 °C. This marked difference between $\{\eta^3$ -HB(3-Bu^tpz)₃MgR and { η^3 -HB(3,5-Me₂pz)₃MgR derivatives is undoubtedly a consequence of the sterically demanding environment created by the η^3 -HB(3-Bu^tpz)₃ ligand that disfavors the formation of the bis complex $\{\eta^3$ -HB(3-Bu'pz)₃ $\}_2$ Mg. Indeed, the tris(3tert-butylpyrazolyl)hydroborato ligand has been described as a "tetrahedral enforcer" due to its ability to effectively restrict a metal center to a maximum of 4-coordination.⁴ Thus, whereas the complexes $\{\eta^3$ -HB(3,5-Me₂pz)₃}MgR undergo ligand redistribution reactions that are analogous to the Schlenk equilibrium, the more sterically demanding tris(3-tert-butylpyrazolyl)hydroborato derivatives $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgR are not subject to such transformations. Such an observation is of particular relevance with regard to other studies (vide infra), and hence we have concentrated our efforts on the more sterically demanding $\{\eta^3$ -HB(3-Bu^tpz)₃MgR system.

Metathesis Reactions. The alkyl derivatives { η^3 -HB(3-Buⁱpz)₃}MgR are useful precursors to a wide variety of other derivatives as a result of metathesis of the magnesium-alkyl bond. Reactions of { η^3 -HB(3-Buⁱpz)₃}MgR with protic reagents, e.g., RC=CH (R = Ph, SiMe₃), ROH (R = Et, Prⁱ, Buⁱ, Ph, CH₂SiMe₃, SiMe₃), BuⁱOOH, PhNH₂, CH₃SH, H₂S and HCl, are accompanied by elimination of the alkane and the formation of the corresponding magnesium derivative as shown in Scheme

⁽⁴⁾ The "tetrahedral enforcer" nature of the η^3 -HB(3-Bu¹p2)₃ ligand was suggested for metals of similar size to the first-row transition elements.⁴⁴ Although this is generally observed, we note that there are exceptions to this suggestion, namely $\{\eta^3$ -HB(3-Bu¹-2)-Mep2)₃[Co(η^2 -O2).⁴⁶ $|\eta^3$ -HB(3-Bu¹p2)₃]-Cu(η^2 -O2NO).⁴⁶ (a) Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. *Inorg. Chem.* 1987, 26, 1507–1514. (b) Egan, J. W., Jr.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H. J. Am. Chem. Soc. 1990, 112, 2445–2446. (c) Han, R.; Parkin, G. J. Am. Chem. Soc. 1991, 113, 9707–9708.

I. The molecular structure of the chloride complex $\{\eta^3$ -HB(3-Bu^tpz)₃MgCl is shown in Figure 3, confirming the monomeric nature and η^3 -coordination of the tris(pyrazolyl)hydroborato ligand. Selected bond lengths and angles for $\{\eta^3$ -HB(3-Bu^tpz)₃MgCl are given in Tables III and IV.

The reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH₃ with acetone gives the enolate complex $\{\eta^3$ -HB(3-Bu¹pz)_3\}Mg[\eta^1-OC(=CH₂)CH₃} and CH₄. The clean formation of the enolate complex is not expected on the basis of conventional Grignard reactions with acetone, in which the alkoxide derivative $\{\eta^3 - HB(3 - Bu^t pz)_3\}$ $MgOC(CH_3)_3$ should be formed. However, magnesium enolate complexes have previously been isolated for ketones with sterically demanding substituents, e.g., Bu^tC(O)Et⁵ and (2,4,6- $Me_3C_6H_2)C(O)CH_3.^6$ The formation of $\{\eta^3-HB(3-Bu^tpz)_3\}Mg$ - $\{\eta^1 - OC(=CH_2)(CH_3)\}$ represents a unique example of a magnesium enolate derived from acetone. Similarly, the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 with CH₃C(O)Bu^t gives the enolate complex $\{\eta^3$ -HB(3-Bu^tpz)_3\}Mg[η^1 -OC(=CH₂)(Bu^t)]. The NMR and IR data of $\{\eta^3$ -HB(3-Bu^tpz)₃ $Mg\{\eta^1$ -OC(=CH₂)(CH₃) $\}$ and $\{\eta^3$ -HB(3-Bu^tpz)_3\}Mg\{\eta^1-OC(=CH₂)(Bu^t)} are particularly characteristic of enolate derivatives. Specifically for $\{\eta^3$ -HB(3-Bu¹pz)₃{Mg{ η^1 -OC(=CH₂)(CH₃)}, $\nu_{C=C}$ is observed at 1620 cm⁻¹ in the IR spectrum and the olefinic resonances $\{OC(=CH_2)(CH_3)\}$ and $\{OC(=CH_2)(CH_3)\}$ are observed at δ 83.1 and 161.9, respectively, in the ¹³C NMR spectrum.

Metathesis reactions are also observed with nonprotic reagents such as dimethyl disulfide, alkyl halides, trimethylsilyl derivatives, and halogens as shown in Scheme II. Thus, $\{\eta^3 - HB(3 -$ Bu^tpz)₃MgCH₃ reacts with a variety of alkyl and aralkyl halides (RX) at ca. 100-140 °C to give the halide derivative $\{\eta^3$ -HB(3-Bu^tpz)₃MgX. Similarly, the reactions of $\{\eta^3 - HB(3 - Bu^t pz)_3\}$ -

MgCH₃ with trimethylsilyl derivatives Me₃SiX (X = Cl, Br, I, NCS, NCO) give $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgX and Me₄Si. For the reactions of $\{\eta^3$ -HB(3-Bu^tpz)₃}MgCH₃ with RI (R = CH₃, CH₃CH₂) to give $\{\eta^3$ -HB(3-Bu^tpz)₃}MgI, the alkane coupling products RCH₃ were also observed by ¹H NMR spectroscopy. The reaction between $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 and CH₃I has also been examined using ¹³CH₃I. Significantly, the reaction with ¹³CH₃I demonstrates that, in addition to alkylation (to give ${\eta^3-HB(3-Bu^tpz)_3}MgI$ and ${}^{13}CH_3CH_3$), there is also a competitive metathesis process involving alkyl exchange (to give $\{\eta^3$ -HB(3-Bu^tpz)₃Mg¹³CH₃ and CH₃I), as shown in Scheme III.

The observation of competitive alkyl exchange is supported by the reaction of $\{\eta^3$ -HB(3-Bu^tpz)₃}MgCH₂CH₃ and CH₃I, in which alkyl exchange giving $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 is observed to occur concomitant with the irreversible formation of $\{\eta^3$ -HB(3-Bu^tpz)₃MgI. To our knowledge, alkyl exchange has not previously been observed to occur between Grignard reagents and simple alkyl halides⁷ although there is indirect evidence for alkyl exchange (as determined by the organic products after quenching with CO₂) with more complex derivatives.⁸ The observation of alkyl exchange in the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 with CH₃I is reminiscent of the σ -bond metathesis exchange process reported for $(\eta^5 - C_5 Me_5)_2 ScCH_3$.

The reactions of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 with aralkyl halides $C_6H_5CH_2X$ (X = Cl, Br, I) also result in the clean formation of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgX. However, significant quantities of bibenzyl $(C_6H_5CH_2CH_2C_6H_5)$ are observed in addition to the product of coupling with the methyl group $(C_6H_5CH_2CH_3)$, indicative of radical processes.¹⁰ Support for this suggestion is

⁽⁵⁾ Willard, P. G.; Salvino, J. M. J. Chem. Soc., Chem. Commun. 1986, 153-154.

⁽⁶⁾ Pinkus, A. G.; Lindberg, J. G.; Wu, A.-B. Chem. Commun. 1969, 1350-1351.

⁽⁷⁾ Gilman, H.; Jones, H. L. J. Am. Chem. Soc. 1929, 51, 2840-2846.
(8) (a) Kharasch, M. S.; Fuchs, C. F. J. Org. Chem. 1945, 10, 292-297.
(b) Kharasch, M. S.; Lambert, F. L.; Urry, W. H. J. Org. Chem. 1945, 10, 2002-2002. 298-306.

⁽⁹⁾ Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, ; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203-219.

Figure 3. Molecular structure of $\{\eta^3-HB(3-Bu^1pz)_3\}MgCl$.

Table III. Selected Bond Lengths for $\{\eta^3-HB(3-Bu^1pz)_3\}MgCl$ (Å)

Mg-Cl	2.262 (2)	Mg-N(12)	2.097 (5)
Mg-N(22)	2.100 (3)	Mg-N(22')	2.101 (3)
N(11)-N(12)	1.379 (6)	N(11)-C(11)	1.338 (8)
N(11)-B	1.542 (8)	N(12)-C(13)	1.351 (7)
N(21)-N(22)	1.376 (4)	N(21)-C(21)	1.328 (5)
N(21)-B	1.538 (5)	N(22)-C(23)	1.345 (5)
C(11)-C(12)	1.357 (10)	C(12)-C(13)	1.375 (10)
C(13) - C(14)	1.510 (9)	C(14) - C(15)	1.530 (9)
C(14) - C(16)	1.535 (7)	C(14)-C(16')	1.535 (7)
C(21)-C(22)	1.363 (6)	C(22)-C(23)	1.387 (6)
C(23)-C(24)	1.518 (6)	C(24)-C(25)	1.525 (6)
C(24) - C(26)	1.536 (7)	C(24)-C(27)	1.512 (7)
B-N(21')	1.538 (5)		

provided by the observation that the reaction of cyclopropylmethyl promide with $\{\eta^3$ -HB(3-Bu¹pz)₃}MgCH₃ results in ring opening and the formation of the homoallyl derivative CH₂=CHCH₂C-H₂Br.¹¹ The formation of products derived from ring-opening reactions of cyclopropylmethyl halide derivatives has previously been proposed to be a test for radical processes.¹² In addition to the nature of the products of the reactions of $\{\eta^3$ -HB(3-Bu¹pz)₃}MgCH₃ with alkyl and aralkyl halides, the qualitative rates of the reactions are also consistent with radical processes. Thus, for the alkyl iodides (CH₃I, CH₃CH₂I, (CH₃)₂CHI, (CH₃)₃CI) the increasing order of reactivity is primary < secondary < tertiary, and for the benzyl halides C₆H₅CH₂X the order is chloride < promide \approx iodide.¹³

Insertion Reactions. Although the anticipated insertion reaction, typical of Grignard reactivity, was not observed between $\{\eta^3$ -HB(3-Bu¹pz)₃}MgCH₃ and acetone to give the alkoxide derivative η^3 -HB(3-Bu¹pz)₃}MgOBu^t, clean insertion of CO₂ to give the acetato complex was observed (eq 3). However, this reaction

s significantly slower than the reactions of Grignard reagents with CO₂. Characterization of the acetato product is provided by the reaction with ¹³CO₂ which allows the J_{C-C} coupling constant in η^3 -HB(3-Bu^tpz)₃}Mg(η^1 -O₂¹³CCH₃) to be determined, a value

Table IV. Selected Bond Angles for $\{\eta^3-HB(3-Bu^1pz)_3\}MgCl$ (deg)

Cl-Mg-N(12)	121.4 (2)	Cl-Mg-N(22)	123.4 (1)
N(12)-Mg-N(22)	93.7 (1)	Cl-Mg-N(22')	123.4 (1)
N(12)-Mg-N(22')	93.7 (1)	N(22)-Mg-N(22')	93.3 (2)

of 53 Hz being clearly indicative of a one-bond coupling. Furthermore, support for the η^1 -coordination mode of the acetato ligand is provided by the X-ray diffraction study of the zinc analogue, { η^3 -HB(3-Bu^tpz)_3}Zn(η^1 -O₂CCH₃).¹⁴

Insertion reactions of $\{\eta^3$ -HB(3-Bu'pz)_3\}MgR are also observed with dioxygen. Thus, treatment of the alkyl complexes $\{\eta^3$ -HB-(3-Bu'pz)_3}MgR (R = CH₃, CH₂CH₃, CH(CH₃)₂, C(CH₃)₃) with excess O₂ at room temperature results in formation of the alkylperoxo complexes $\{\eta^3$ -HB(3-Bu'pz)_3\}MgOOR (eq 4). The

reactions of the derivatives $\{\eta^3$ -HB(3-Bu'pz)_3\}MgR (R = CH₂CH₃, CH(CH₃)₂, C(CH₃)₃) with O₂ are both instantaneous (<10 min) and quantitative, as judged by ¹H NMR spectroscopy. In contrast, the reaction of O₂ with the methyl complex $\{\eta^3$ -HB(3-Bu'pz)₃}-MgCH₃ is significantly slower (>1 day at room temperature) than for the other alkyl derivatives.¹⁵

The ¹⁷O-labeled alkyperoxo complexes { η^3 -HB(3-Bu^tpz)₃}-Mg¹⁷O¹⁷OR, obtained from the reactions of $\{\eta^3$ -HB(3-Bu^tpz)_3\}-MgR with ${}^{17}O_2$ (41%), have been investigated by ${}^{17}O$ NMR spectroscopy. Specifically, each complex shows two ¹⁷O NMR resonances in the ranges δ 102–183 and 323–427 for the peroxo (Mg-O-O-R) moiety as shown in Table V and Figure 4. Interestingly, Figure 4 illustrates that the ¹⁷O NMR resonances for the two oxygen atoms of the alkylperoxo group shift in opposite directions upon changing of the alkyl substituent. On the basis of the observed trend for the ¹⁷O NMR resonances of the corresponding alcohols (also shown in Figure 4), we suggest that the set of resonances at higher field correspond to the β -O atoms and that the set of resonances at lower field correspond to the α -O atoms of the alkylperoxo moiety. The Mg-O-O-R group is further characterized by IR absorption bands in the ranges 889–935 cm⁻¹ (ν_{O-O}) and 608–660 cm⁻¹ (ν_{Mg-O}) that are assigned on the basis of the shifts observed for the isotopomers $\{\eta^3$ -HB-(3-Bu^tpz)₃}Mg¹⁸O¹⁸OR.¹⁶ Other supporting evidence that the products are alkylperoxo complexes is provided by the observation that the tert-butylperoxo derivative ${\eta^3-HB(3-Bu^tpz)_3}MgOOC (CH_3)_3$ may be synthesized independently by the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_3 with the hydroperoxide (CH₃)_3COOH as shown in Scheme I.

(16) ν_{0-6} for alkylperoxy derivatives are typically in the range 850-950 cm⁻¹. (a) Booth, B. L.; Haszeldine, R. N.; Neuss, G. R. H. J. Chem. Soc., Dalton Trans. 1982, 37-41. (b) Saussine, L.; Brazi, E.; Robine, A.; Mimoun, H.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1985, 107, 3534-3540. (c) Strukul, G.; Ros, R.; Michelin, R. A. Inorg. Chem. 1982, 21, 495-500. (d) Mimoun, H.; Charpentier, R.; Mitschler, A.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1980, 102, 1047-1054. (e) Strukul, G.; Michelin, R. A.; Orbell, J. D.; Randaccio, L. Inorg. Chem. 1983, 22, 3706-3713. (f) Mimoun, H.; Mignard, M.; Brechot, P.; Saussine, L. J. Am. Chem. Soc. 1986, 108, 3711-3718. (g) Nishinaga, A.; Tomita, H.; Ohara, H. Chem. Lett. 1983, 1751-1754. (h) Ferguson, G.; Monoghan, P. K.; Parvez, M.; Puddephatt, R. J. Organometallics 1985, 4, 1669-1674. (i) Giannotti, C.; Fontaine, C.; Chiaroni, A.; Riche, C. J. Organomet. Chem. 1976, 113, 57-65. (j) Tatsuno, Y.; Otsuka, S. J. Am. Chem. Soc. 1981, 103, 5832-5839. (k) van Aselt, A.; Santarsiero, B. D.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 8291-8293. (l) Mimoun, H.; Chaumette, P.; Mignard, M.; Saussine, L. Nouv. J. Chim. 1983, 7, 467-475. (m) Espenson, J. H.; Melton, J. D. Inorg. Chem. 1983, 22, 2779-2781. (n) Giannotti, C.; Fontaine, C.; Septe, B. J. Organomet. Chem. 1974, 71, 107-124. (o) Nishinaga, A.; Tomita, H.; Nishizawa, K.; Matsuura, T.; Ooi, S.; Hirotsu, K. J. Chem. Soc., Dalton Trans. 1981, 1504-1514.

⁽¹⁰⁾ For the reactions of $[\eta^3$ -HB(3-Bu¹pz)₃]MgCH₃ with PhCH₂X, the atios of the products PhCH₂CH₃ to PhCH₂CH₂Ph are approximately 40:60 X = Cl), 50:50 (X = Br), and 10:90 (X = 1).

⁽¹¹⁾ Ring-opening of c-C₃H₅CH₃Br to CH₂=CHCH₂CH₂Br is, in fact, aster than the formation of $[\eta^3$ -HB(3-Bu'pz)₃]MgBr, presumably suggesting hat the CH₂=CHCH₂CH₂' radical is more reactive toward excess c-C₃H₅CH₂Br than $[\eta^3$ -HB(3-Bu'pz)₃]MgR.

 $L_3H_3CH_2Br$ than $\{\eta^3-HB(3-Bu'|p_2)\}_3MgR$. (12) (a) Griller, D.; Ingold, K. U. Acc. Chem. Res. **1980**, 13, 317–323. (b) 30wry, V. W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. **1991**, 113, 5687–5698.

⁽¹³⁾ Although the reactions are not kinetically well behaved and thus revent a detailed analysis, an estimate of the second-order rate constants for he reactions of $\{\eta^3$ -HB(3-Bu'p2)_3\}MgCH_3 with RX under similar conditions rovides an indication of the relative reactivity of RX. $k \pmod{1^{-1} L s^{-1}}$ at 100 'C): CH₃1, $\approx 10^{-4}$; CH₃CH₂1 $\approx 10^{-5}$; (CH₃)₂CH1, $\approx 10^{-4}$; (CH₃)₃C1, $\approx 10^{-3}$; $C_6H_5CH_2CI$, $\approx 10^{-5}$; $C_6H_5CH_2Br$, $\approx 10^{-3}$.

⁽¹⁴⁾ Han, R.; Gorrell, I. B.; Looney, A. G.; Parkin, G. J. Chem. Soc., Chem. Commun. 1991, 717-719.

⁽¹⁵⁾ The reaction of O₂ with $\{\eta^3$ -HB(3-Bu'pz)₃]MgCH₃ is also accompanied by ca. 30% decomposition, so that the product $\{\eta^3$ -HB(3-Bu'pz)₃]-MgOOCH₃ has only been characterized spectroscopically.

Scheme II

Scheme III

Table V. ¹⁷O NMR Data^a

	δ(Mg <i>O</i> OR)	δ(MgOOR)
${\eta^{3}-HB(3-Bu'pz)_{3}}MgOOCH_{3}$	427	102
${\eta^3-HB(3-Bu^tpz)_3}MgOOCH_2CH_3$	407	130
$\{\eta^3$ -HB(3-Bu ^t pz) ₃]MgOOCH(CH ₃) ₂	373	159
${\eta^3-HB(3-Bu^1pz)_3}MgOOC(CH_3)_3$	323	183

"Relative to H₂O.

Figure 4. ¹⁷O NMR shifts for $\{\eta^3$ -HB(3-Bu¹pz)₃]MgOOR and ROH.

The reactions of molecular oxygen with metal alkyl derivatives are of fundamental importance in view of the role that metal-based oxidations play in systems as diverse as industrial and biological processes.¹⁷ However, the reactions of organometallic derivatives with oxygen often produce complex mixtures, in part as a result of the indiscriminate reactivity of radical intermediates, and relatively few reactions result in the formation of single products.¹⁸ In this regard the isolation of discrete products by the reaction of dioxygen with metal alkyl derivatives and investigation of their subsequent reactivity have provided major challenges. Although a number of well-characterized examples of reactions of dioxygen with metal alkyl complexes have been reported, isolated products are commonly alkoxo derivatives, $[L_nMOR]$,¹⁹ with relatively few examples involving isolation of alkylperoxo complexes, $[L_nMOOR]$.²⁰ The selective formation of alkylperoxo complexes in the reactions of $\{\eta^3$ -HB(3-Bu'pz)₃}MgR with O₂ is presumably a consequence of the sterically demanding ligand environment that hinders bimolecular oxygen atom abstraction from the alkylperoxo complex by alkyl derivative, which is the commonly suggested pathway for the formation of alkoxo derivatives (eq 5). In support

$$L_n MOOR + L_n MR \rightarrow 2L_n MOR$$
 (5)

(17) (a) Mimoun, H. Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, 1987; Vol. 6, pp 317-410. (b) Sheldon, R. A.; Kochi, J. K. Metal Catalzed Oxidations of Organic Compounds; Academic Press: New York, 1981. (c) Graselli, R. K.; Burrington, J. D. Adv. Catal. 1981, 30, 133-163. (d) Graselli, R. K.; Burrington, J. D., Brazdil, J. F. Faraday Discuss. Chem. Soc. 1981, 72, 203-223. (e) Sheldon, R. A. J. Mol. Catal. 1983, 20, 1-26. (f) Martell, A. E. Pure Appl. Chem. 1983, 55, 125-135. (g) Malmstrom, B. G. Annu. Rev. Biochem. 1982, 51, 21-59. (h) Peruzz, M. F. Annu. Rev. Biochem. 1979, 48, 327-386. (i) Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 139-179. (j) White, R. E. Annu. Rev. Biochem. 1980, 49, 315-356. (k) Guengerich, F. P.; Macdonald, T. L. Acc. Chem. Res. 1984, 17, 9-16. (l) Collman, J. P. Acc. Chem. Res. 1977, 10, 265-272.

(18) (a) Brilkina, T. G.; Shushunov, V. A. Reactions of Organometallic Compounds with Oxygen and Peroxides; Illiffe Books: London, 1969. (b) Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances; Prentice-Hall: New York, 1954. (c) Davies, A. G. Organic peroxides; Swern, D., Ed.; Wiley-Interscience: New York, 1972; Vol. 2, Chapter 4, pp 337-354. (d) Walling, C.; Buckler, S. A. J. Am. Chem. Soc. 1955, 77, 6032-6038. (e) Blackburn, T. F.; Labinger, J. A.; Schwartz, J. Tetrahedron Lett. 1975, 3041-3044. (f) Panek, E. J.; Whitesides, G. M. J. Am. Chem. Soc. 1972, 94, 8768-8775. (g) Hock, H.; Kropf, H.; Ernst, F. Angew. Chem. 1959, 71, 541-545. (h) Sonsovsky, G.; Brown, J. H. Chem. Rev. 1966, 66, 529-566. (i) Porter, C. W.; Steele, C. J. Am. Chem. Soc. 1929, 42, 2650-2654. (j) Hock, H.; Ernst, F. Chem. Ber. 1959, 92, 2716-2723. (k) Hock, H.; Ernst, F. Chem. Ber. 1959, 92, 2732-2732. (l) Hock, H.; Ernst, F. Chem. Ber. 1959, 92, 2732-2740.

(19) (a) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc. 1987, 109, 424-435. (b) Brindley, P. B.; Scotton, M. J. J. Chem. Soc., Dalton Trans. 1981, 419-423. (c) Parkin, G.; Schaefer, W. P.; Marsh, R. E.; Bercaw, J. E. Inorg. Chem. 1988, 27, 3262-3264. (d) Parkin, G.; Bercaw, J. E. Polyhedron 1988, 7, 2053-2082. (e) Bottomley, F.; Magill, C. P.; White, P. S. J. Am. Chem. Soc. 1989, 111, 3071-3073. (f) Saussine, L.; Brazi, E.; Robine, A.; Minoun, H.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1985, 107, 3534-3540. (g) Nishinaga, A.; Tomita, H.; Ohara, H. Chem. Lett. 1983, 1751-1754.

(20) (a) Fontaine, C.; Duong, K. N. V.; Merienne, C.; Gaudemer, A.;
 Giannotti, C. J. Organomet. Chem. 1972, 38, 167-178. (b) Chiaroni, A.;
 Pascard-Billy, C. Bull. Soc. Chim. Fr. 1973, 781-787. (c) Jensen, F. R.;
 Kiskis, R. C. J. Organomet. Chem. 1973, 49, C46-C48. (d) Cleaver, W. M.;
 Barron, A. R. J. Am. Chem. Soc. 1989, 111, 8966-8967.

of this suggestion, $\{\eta^3$ -HB(3-Bu^tpz)₃ $\}$ MgOOCH(CH₃)₂ and $\{\eta^3$ -HB(3-Bu^tpz)₃}MgCH(CH₃)₂ do not react rapidly at room temperature to give the alkoxo derivative $\{\eta^3-HB(3-Bu^tpz)_3\}$ -MgOCH(CH₃)₂, but rather require heating to 80 °C to effect this transformation (eq 6). The alkoxo derivatives $\{\eta^3 - HB(3 - HB)\}$

$$\{\eta^{3}-HB(3-Bu^{t}pz)_{3}\}MgOOPr^{i} + \{\eta^{3}-HB(3-Bu^{t}pz)_{3}\}MgPr^{i} \xrightarrow{\delta 0^{-1}C} 2\{\eta^{3}-HB(3-Bu^{t}pz)_{3}\}MgOPr^{i} (6)$$

 $Bu^{t}pz_{3}MgOR (R = CH_{3}, CH_{2}CH_{3}, CH(CH_{3})_{2}, C(CH_{3})_{3})$ are also obtained upon treatment of $\{\eta^3$ -HB(3-Bu^tpz)₃]MgOOR with **PPh₃** (eq 7).

$$\{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})_{3}\}\text{MgOOR} + \text{PPh}_{3} \rightarrow \\ \{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})_{3}\}\text{MgOR} + \text{Ph}_{3}\text{PO} (7)$$

In marked contrast to the above reactions of molecular oxygen with the alkyl derivatives $\{\eta^3$ -HB(3-Bu^tpz)₃}MgR to give alkylperoxo complexes, the analogous reaction of the (trimethylsilyl)methyl derivative $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_2SiMe_3 with O_2 is accompanied by facile Si-C bond cleavage and the formation of the trimethylsiloxide derivative $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgOSiMe_3 (eq 8).²¹ Formaldehyde was also observed by ¹H NMR spec-

{
$$\eta^{3}$$
-HB(3-Bu^tpz)₃}MgCH₂SiMe₃ $\xrightarrow{O_{2}}$
{ η^{3} -HB(3-Bu^tpz)₃}MgOSiMe₃ + (CH₂O)_n (8)

troscopy as a product of this reaction. Identification of the trimethylsiloxide derivative $\{\eta^3$ -HB(3-Bu^tpz)₃MgOSiMe₃ is also supported by the independent syntheses using the reactions of (i) ${\eta^3-HB(3-Bu^{\dagger}pz)_3}MgCl and KOSiMe_3 and also (ii) {\eta^3-HB(3-$ Bu^tpz)₃MgCH₃ with Me₃SiOH (Scheme I).

Organic products arising from facile cleavage of Si-C bonds of other (trialkylsilyl)metal derivatives upon autoxidation have been previously observed and thus provide a precedent for the reactions described here. For example, treatment of the Grignard reagent Me₃SiCH₂MgCl with O₂, followed by hydrolysis, gave significant quantities of Me₃SiOH, (Me₃Si)₂O, and CH₂O.²² Therefore, these observations provide further evidence that such cleavage reactions may be a general feature of (trimethylsilyl)methyl derivatives upon autoxidation.

The mechanism of the reactions of oxygen with metal alkyl derivatives is of considerable interest since the direct insertion of ground-state triplet oxygen into metal-carbon bonds is considered to be unlikely. Evidence for mechanisms involving radical intermediates in the reactions of metal-alkyls with O_2 has been previously suggested by the observations of alkyl group rearrangement and racemization, and also inhibition of autoxidation by radical traps.²³ Thus, radical chain processes of the type illustrated by eqs 9-11 have been proposed for the autoxidation

> $L_nM-R + O_2 \rightarrow L_nMOO^{\bullet} + R^{\bullet}$ (initiation) (9)

$$R^{\bullet} + O_2 \rightarrow ROO^{\bullet}$$
(10)

$$L_n M - R + ROO^{\bullet} \rightarrow L_n MOOR + R^{\bullet}$$
 (11)

of metal-alkyl derivatives. We have monitored the reactions of the magnesium alkyl derivatives $\{\eta^3 - HB(3 - Bu^{\dagger}pz)_3\}MgR$ by ¹H NMR spectroscopy. Although the insertion of O_2 into the Mg–C

bonds of the derivatives $\{\eta^3$ -HB(3-Bu^tpz)₃}MgR (R = CH₂CH₃, $CH(CH_3)_2$, $C(CH_3)_3$) is too rapid to be studied, the reaction of the methyl derivative may be conveniently monitored by ¹H NMR spectroscopy over a period of several days at room temperature. Monitoring the reaction of two samples of $\{\eta^3 - HB(3 - Bu^t pz)_3\}$ MgCH₃ and O₂ prepared under identical conditions, with the exception of prior addition of a small quantity (~2 mol %) of the radical trap galvinoxyl to one of them, indicated that the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH₃ with O₂ was inhibited by the galvinoxyl. Although more detailed kinetic information could not be obtained from this study due to the occurrence of other decomposition pathways, this observation supports the above radical chain sequence for formation of the alkylperoxo complexes $\{\eta^3$ -HB(3-Bu^tpz)₃MgOOR. Further evidence for a radical chain process is provided by the observation of crossover products using two different tris(pyrazolyl)hydroborato ligands. For example, the reaction of O₂ with a mixture of $\{\eta^3$ -HB(3-Bu^tpz)₃}MgCH₃ and $\{\eta^3$ -HB(3,5-Me₂pz)_3\}MgC(CH₃)_3 results in the formation of, inter alia, the crossover product $\{\eta^3$ -HB(3-Bu^tpz)₃MgOOC(CH₃)₃ (eq 12). We note that the alkyl exchange between $\{\eta^3 - HB(3 - \eta^3)\}$

{
$$\eta^3$$
-HB(3-Bu¹pz)₃}MgCH₃ +
{ η^3 -HB(3,5-Me₂pz)₃}MgC(CH₃)₃ $\xrightarrow{O_2}$

 ${\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})_{3}}MgOOC(CH_{3})_{3} + ... (12)$

 $Bu^{t}pz_{3}MgCH_{3}$ and $\{\eta^{3}-HB(3,5-Me_{2}pz_{3})MgC(CH_{3})\}$ does not occur in the absence of O_2 over a period of more than 1 month at 80 °C.

Similarly, we suggest that the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}-MgCH₂SiMe₃ with O₂ also involves a radical chain process, and a proposed mechanism for the formation of $\{\eta^3$ -HB(3-Bu^tpz)_3\}-MgOSiMe₃ involves the generation of Me₃SiO[•] as a result of the rearrangement of the radical intermediate Me₃SiCH₂O₂• (eq 13).

$$\begin{array}{ccc} \mathsf{Me}_3\mathsf{Si} & & \mathsf{Me}_3\mathsf{Si} & & \mathsf{O}^* \\ & & & & \mathsf{He}_2 & \\ & & & \mathsf{CH}_2 & & \mathsf{O}^* \end{array} \tag{13}$$

The formation of a strong Si-O bond would be expected to provide an effective driving force for such a transformation. Support for a radical chain process is also provided by the observation of (i) mild inhibition of the reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH_2SiMe_3 with O_2 in the presence of galvinoxyl and (ii) crossover products using two different tris(pyrazolyl)hydroborato ligands. Thus, the reaction of O₂ with a mixture of $\{\eta^3 - HB(3, 5 - Me_2pz)_3\}$ -MgCH₂SiMe₃ and $\{\eta^3$ -HB(3-Bu^tpz)₃MgC(CH₃)₃ results in the formation of both $\{\eta^3$ -HB(3-Bu^tpz)₃}MgOOC(CH₃)₃ and $\{\eta^3$ - $HB(3-Bu^{t}pz)_{3}MgOSiMe_{3}$ (eq 14).²⁴

$$\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}MgC(CH_{3})_{3} + \\ \{\eta^{3}-HB(3,5-Me_{2}pz)_{3}\}MgCH_{2}SiMe_{3} \xrightarrow{O_{2}} \\ \{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}MgOSiMe_{3} + \\ \{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}MgOOC(CH_{3})_{3} + ... (14)$$

Conclusion

In summary, the reactivity of a series of 4-coordinate magnesium alkyl derivatives $\{\eta^3$ -HB(3-Bu^tpz)₃}MgR and $\{\eta^3$ -HB(3,5-Me₂pz)₃}MgR stabilized by tris(pyrazolyl)hydroborato ligation has been investigated. The complexes $\{\eta^3$ -HB(3,5-Me₂pz)₃MgR undergo ligand redistribution reactions, analogous to the Schlenk equilibrium, to give the sandwich complex $\{\eta^3$ -HB(3,5-Me₂pz)₃₂Mg. In contrast, magnesium alkyl derivatives of the more sterically demanding tris(3-tert-butylpyrazolyl)hydroborato ligand, $\{\eta^3$ -HB(3-Bu^tpz)₃}MgR, are stable with respect to the formation of $\{\eta^3$ -HB(3-Bu^tpz)_3\}_2Mg. The alkyl complexes $\{\eta^3$ -HB(3-Bu^tpz)₃}MgR are useful precursors for a variety of other 4-coordinate complexes, including $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgX (X = C≡CR, OR, OOR, NHPh, SH, SCH₃, Cl, Br, I, NCO, NCS),

⁽²¹⁾ Over a period of days at room temperature, the minor product, which may be tentatively assigned as the (trimethylsilyl)peroxo derivative {n³-HB-(3-Bu'pz)₃]MgOOCH₂SiMe₃ is slowly converted to {n³-HB(3-Bu'pz)₃]MgO-

⁽³⁻Bu'p2)₃/MgOOCH₂S1Me₃ is slowly converted to {η-FIB(3-Bu'p2)₃/MgO-SiMe₃.
(22) Eisch, J. J.; Husk, G. R. J. Org. Chem. 1964, 29, 254-256.
(23) (a) Davies, A. G.; Roberts, B. P. Acc. Chem. Res. 1972, 5, 387-392.
(b) Davies, A. G.; Roberts, B. P. J. Chem. Soc., Dalton Trans. 1968, 1968, 1074-1078.
(c) Lamb, R. C.; Ayers, P. W.; Toney, M. K.; Garst, J. F. J. Am. Chem. Soc. 1970, 92, 6609-6611.
(e) Howden, M. E. H.; Maercker, A.; Burdon, J.; Roberts, J. D. J. Am. Chem. Soc. 1972, 94, 8768-8775.
(g) Jensen, F. R.; Kiskis, R. C. J. Organomet. Chem. Soc. 1974-1078. G.; Roberts, B. P. J. Chem. Soc. B 1968, 1074-1078.

⁽²⁴⁾ In view of the decomposition that arises as a result of the reaction of ${\eta^3}$ -HB(3,5-Me₂pz)₃MgR derivatives with O₂, only the ${\eta^3}$ -HB(3-Bu'pz)₃MgX derivatives can be definitively identified as crossover products.

Table VI. Selected ¹H and ¹³C NMR Data^a

				2	
assignment	ð (ppm)	coupling (Hz)	assignment	o (ppm)	coupling (Hz)
		{η ³ -HB(3-Bu ¹)	oz) ₃ }MgCCPh		
η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	1.56	S	η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ } ₃	31.3	q, ${}^{t}J_{C-H} = 126$
MgCCC ₆ H ₅			MgCCC ₆ H ₅		
2 o-H	7.78	m	1 ipso-C	128.6	$t_{,2}J_{C-H} = 8$
2 m-H	7.15	m	2 o-C	128.3	d, ${}^{1}J_{C-H} = 159$
1 p-H	7.03	m			d, ${}^{2}J_{C-H} = 8$
			2 m-C	131.9	d, ${}^{1}J_{C-H} = 160$
					d, ${}^{2}J_{C-H} = 7$
			1 p-C	126.2	d, ${}^{1}J_{C-H} = 160$
					d, ${}^{2}J_{C-H} = 8$
			MgC ₂ C ₆ H ₅		
				113.6	S
			10	121.8	S
		${\eta^3}$ -HB(3-Bu ⁱ pz)	MgCCSi(CH ₁) ₁		
η^3 -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃	1.54	S	η^{3} -HB{C_{3}N_{2}H_{2}C(CH_{3})_{3}}	31.5	$q_1 t_{C-H} = 126$
$MgCCSi(CH_3)_3$	0.40	S	MgCCSi(CH ₃) ₃	120.0	S
			-	146.7	S
			MgCCSi(CH ₃) ₃	1.35	q, ${}^{1}J_{C-H} = 119$
		(3 LID(2 Du	(ng) MaSH		
³ -HB(C.N.H.C(CH.).)	1 47	in -د)م. د	n ³ -HB(C ₁ N ₂ H ₂ C(CH ₂))	31 4	$0^{-1}I_{c} = 126$
M_{a-SH}	-1.02	s	η -ΠΒ(C31(2Π2C(CΠ3)3)3	51.4	q, ³ C-H - 120
	1.02				
•		{η ³ -HB(3-Bu ⁱ]	pz) ₃ MgSCH ₃		
η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	1.49	S	η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	31.2	$q_{1,I}^{1}J_{C-H} = 126$
MgSCH ₃	2.59	S	MgSCH ₃	10.2	q, ${}^{1}J_{C-H} = 137$
		1-3 UD/2 Dul)	MOCH CH		
-HRICNUC(CH))	1 40	(<i>β</i> -חם(β-bu·pz)		20 7	a tr = 120
$M_2 \cap C H$	1.40	$a^{3}L_{2} = 68$	η	50.7	$q_{1} J_{C-H} = 120$
$M_2OCH CH$	4.03	$q_{1} = 5_{H-H} = 0.8$	MaOCH CH	39.3	$L_{\rm r} = 133$
MgOCH ₂ CH ₃	1.72	$t_{\rm H} = 0.8$	MgOCH ₂ CH ₃	23.4	$q_{\rm r} = 123$
		$\{\eta^3 - HB(3 - Bu^1pz)\}$	MgOCH(CH ₃) ₂		
η^{3} -HB{C_{1}N_{2}H_{2}C(CH_{3})_{3}}_{1}	1.48	s	η^{3} -HB{C_{3}N_{2}H_{2}C(CH_{3})_{3}}	31.0	$q_1^{-1}J_{C-H} = 126$
MgOCH(CH ₁),	4.84	spt, ${}^{3}J_{H-H} = 6.0$	MgOCH(CH ₃),	64.2	$d_{1}^{1}J_{C-H} = 134$
$MgOCH(CH_3)_2$	1.65	d, ${}^{3}J_{\rm H-H} = 6.0$	$MgOCH(CH_3)_2$	30.2	q, ${}^{1}J_{C-H} = 123$
		(.3 UD/2 D.J			
	1.60	{η ² -HB(3-BU)	$pz_{3}MgOBU$	21.6	- 17 - 126
η^{2} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃) ₃	1.50	s	$\eta^{-}\Pi B(C_3 N_2 \Pi_2 C(C \Pi_3)_{3})_3$	31.0	$q_{1} \cdot J_{C-H} = 126$
$MgOC(CH_3)_3$	1.75	8	$M_{2}OC(CH)$	35.7	$q_{\rm r} - J_{\rm C-H} = 127$
			MgOe(eng)g	08.1	5
		${\eta^{3}-HB(3-Bu^{1}pz)_{3}}$	MgOCH ₂ Si(CH ₃) ₃		
η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	1.48	S	η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃ } ₃	30.7	$q, {}^{1}J_{C-H} = 126$
$MgOCH_2Si(CH_3)_3$	4.20	S	MgOCH ₂ Si(CH ₃) ₃	58.2	t, ${}^{1}J_{C-H} = 122$
$MgOCH_2Si(CH_3)_3$	0.37	S	MgOCH ₂ Si(<i>C</i> H ₃) ₃	-2.1	q, ${}^{1}J_{C-H} = 118$
		m ³ -HB(3-Bul	nz) (MaOPh)		
	1 40	(q -11D(5-Du)	m^3 -HB(C,N,H,C(CH,),)	30.7	$a^{1}I = 126$
$M_{0} - \Omega C_{1} H_{1}$	1.40	3	MoOC.H.	50.7	ч, ^у с-н – 120
2 or H	7 28	$d_{1}^{3}J_{1} = 7.5$	l inso-C	163.3	$t^{2}I_{a} = 0$
2 m-H	7.52	$t^{3}I_{11} = 75$	2 0-0	129.0	$d^{-1}I_{n} = 155$
1 p-H	6.96	$J_{\mu_{\mu}}^{I} = 7.5$		- 27.0	$d_{1}^{2}J_{C} = 0$
	0120		2 m-C	120.2	$d_{1}^{-1}J_{C-11} = 154$
					$d_{1}^{2}J_{C-1} = 8$
					$d_{1}^{2}J_{C_{-}\mu} = 5$
			1 p-C	114.5	$d_{1}^{t}J_{C-u} = 160$
			•		$t, {}^{2}J_{C-H} = 7$
		() TTD/0 - 1	N-05%0U \		· • •
		η^{γ} -HB(3-Bu'pz)	3 MgUSi(CH ₃)3		. 1
r-HBC,N,H,C(CH,),	1.44	S	η^{-} HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃	31.2	q, $J_{C-H} = 126$
	0.53	8	MgUSI(CH ₃) ₃	4.9	$q, J_{C-H} = 116$
$MgOSi(CH_3)_3$			MgOOCH		
$MgOSi(CH_3)_3$		n ³ -HB(3-Bu ⁱ n ²			- 17 - 196
$MgOSi(CH_3)_3$ $\eta^3-HB\{C_3N_2H_2C(CH_3)_3\}$	1.45	{η ³ -HB(3-Bu ¹ p2 s	η^3 -HB{C ₁ N ₂ H ₂ C(CH ₁) ₃],	30.6	$q_1 \cdot J_{C_n u} = 120$
η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	1.45 4.06	{η ³ -HB(3-Bu ¹ p2 s s	η^{3} -HB{C_{3}N_{2}H_{2}C(CH_{3})_{3}}_{3} MgOOCH ₃	30.6 64.0	$q_{1} \cdot J_{C-H} = 120$ $q_{1} \cdot J_{C-H} = 142$
η ³ -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃	1.45 4.06	{η ³ -HB(3-Bu ¹ p2 s s	η^3 -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH ₃	30.6 64.0	$q, J_{C-H} = 120$ $q, J_{C-H} = 142$
$h_{gOSi}(CH_{3})_{3}$ $h_{gOSi}(CH_{3})_{3}$ $h_{gOOCH_{3}}^{3}$ -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ MgOOCH_{3}	1.45 4.06	{η ³ -HB(3-Bu'pz s s {η ³ -HB(3-Bu'pz) ₃	η^3 -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃ MgOOCH ₂ CH ₃	30.6 64.0	q, ${}^{J}_{C-H} = 120$ q, ${}^{1}_{J}_{C-H} = 142$
η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃	1.45 4.06	$\{\eta^3 - HB(3 - Bu^1p_2)\}$ s s $\{\eta^3 - HB(3 - Bu^1p_2)\}$		30.6 64.0 30.8	q, ${}^{J}_{C-H} = 126$ q, ${}^{1}_{J}_{C-H} = 142$ q, ${}^{1}_{J}_{C-H} = 126$
$M_{g}OSi(CH_{3})_{3}$ $\eta^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}$ $M_{g}OOCH_{3}$ $\eta^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}$ $M_{g}OOCH_{2}CH_{3}$ $M_{g}OOCH_{2}CH_{3}$	1.45 4.06 1.46 4.32	${\eta^{3}-HB(3-Bu^{1}p_{2})}$ s ${\eta^{3}-HB(3-Bu^{1}p_{2})}_{3}$ g, ${}^{3}J_{H-H} = 6.8$	η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH ₃ }MgOOCH ₂ CH ₃ η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃	30.8 64.0 30.8 71.6	q, ${}^{J}_{C-H} = 126$ q, ${}^{1}J_{C-H} = 142$ q, ${}^{1}J_{C-H} = 126$ t, ${}^{1}J_{C-H} = 126$
$M_{gOOSi}(CH_{3})_{3}$ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ $M_{gOOC}H_{3}$ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ $M_{gOOC}H_{2}CH_{3}$ $M_{gOOC}H_{2}CH_{3}$	1.45 4.06 1.46 4.32 1.50	${\eta^{3}-HB(3-Bu^{1}p_{2})}_{s}$ s ${\eta^{3}-HB(3-Bu^{1}p_{2})}_{3}$ g, ${}^{3}J_{H-H} = 6.8$ t, ${}^{3}J_{H-H} = 6.8$		30.6 64.0 30.8 71.6 14.4	q, ${}^{1}J_{C-H} = 126$ q, ${}^{1}J_{C-H} = 142$ q, ${}^{1}J_{C-H} = 126$ t, ${}^{1}J_{C-H} = 143$ q, ${}^{1}J_{C-H} = 126$
η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]$ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ MgOOCH ₃ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃	1.45 4.06 1.46 4.32 1.50	{ η^{3} -HB(3-Bu ¹ pz) s s q, ${}^{3}J_{H-H} = 6.8$ t, ${}^{3}J_{H-H} = 6.8$ { η^{3} -HB(3-Bu ¹ pz),]]		30.6 64.0 30.8 71.6 14.4	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{I}_{C-H} = 123$ q, ${}^{I}_{J_{C-H}} = 126$
$M_{gOSi}(CH_{3})_{3}$ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ $M_{gOOCH_{3}}$ η^{3} -HB $[C_{3}N_{2}H_{2}C(CH_{3})_{3}]_{3}$ $M_{gOOCH_{2}CH_{3}}$ $M_{gOOCH_{2}CH_{3}}$ $M_{gOOCH_{2}CH_{3}}$ $M_{gOOCH_{2}CH_{3}}$	1.45 4.06 1.46 4.32 1.50	{ η^{3} -HB(3-Bu ¹ pz) s s q, ${}^{3}J_{H-H} = 6.8$ t, ${}^{3}J_{H-H} = 6.8$ t, ${}^{3}J_{H-H} = 6.8$ { η^{3} -HB(3-Bu ¹ pz) ₃]		30.6 64.0 30.8 71.6 14.4 30.9	q, ${}^{J}_{C-H} = 126$ q, ${}^{J}_{C-H} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$
$M_{gOOSi}(CH_{3})_{3}$ $m_{gOOSi}(CH_{3})_{3}$ $m_{gOOCH_{3}}$ $m_{gOOCH_{3}}$ $m_{gOOCH_{2}CH_{3}}$ $m_{gOOCH_{2}CH_{3}}$ $m_{gOOCH_{2}CH_{3}}$ $m_{gOOCH_{2}CH_{3}}$ $m_{gOOCH_{2}CH_{3}$ $m_{gOOCH_{2}CH_{3}}$ $m_{gOOCH_{2}CH_{3}$ $m_{gOOCH_{2}CH_{3}}$	1.45 4.06 1.46 4.32 1.50 1.48 4.50	$\{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})\}$ s $\{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})\}$ $q, {}^{3}J_{H-H} = 6.8$ $t, {}^{3}J_{H-H} = 6.8$ $\{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})\}$ s $\{\eta^{3}-\text{HB}(3-\text{Bu}^{1}\text{pz})\}$	η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH ₃ MgOOCH ₂ CH ₃ η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH(CH ₃) ₂ η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃] ₃ MgOOCH(CH ₃) ₂	30.6 64.0 30.8 71.6 14.4 30.9 76.5	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{J}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ d, ${}^{I}_{J_{C-H}} = 126$
$M_{g}OSi(CH_{3})_{3}$ $n^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}$ $M_{g}OOCH_{3}$ $n^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}$ $M_{g}OOCH_{2}CH_{3}$ $M_{g}OOCH_{2}CH_{3}$ $M_{g}OOCH_{2}CH_{3}$ $m^{3}-HB\{C_{3}N_{2}H_{2}C(CH_{3})_{3}\}_{3}$ $M_{g}OOCH_{2}CH_{3}$ $M_{g}OOCH_{2}CH_{3}$ $M_{g}OOCH_{3}N_{2}N_{2}N_{3}$	1.45 4.06 1.46 4.32 1.50 1.48 4.50 1.52	$\{\eta^{3}-HB(3-Bu^{i}pz)\}$ s s $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ s $q, {}^{3}J_{H-H} = 6.8$ $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ s $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ $\{\eta^{3}-HB(3-Bu^{i}pz)_{3}\}$ $\{\eta^{3}-HB(3-Bu^{i}$	η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃]MgOOCH ₂ CH ₃ η^{2} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH(CH ₃) ₂ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂	30.6 64.0 30.8 71.6 14.4 30.9 76.5 21.6	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{J}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ d, ${}^{I}_{J_{C-H}} = 126$ d, ${}^{I}_{J_{C-H}} = 126$
	1.45 4.06 1.46 4.32 1.50 1.48 4.50 1.52	$\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}J_{H-H} = 6.8$ $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s spt, ${}^{3}J_{H-H} = 6.2$ d, ${}^{3}J_{H-H} = 6.2$ d, ${}^{3}J_{H-H} = 6.2$	η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃]MgOOCH ₂ CH ₃ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH(CH ₃) ₂ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂	30.6 64.0 30.8 71.6 14.4 30.9 76.5 21.6	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{I}_{J_{C-H}} = 143$ q, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ d, ${}^{I}_{J_{C-H}} = 126$
$f_{gOOC}(CH_{3})_{3}$	1.45 4.06 1.46 4.32 1.50 1.48 4.50 1.52	$\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s $\{\eta^{3}-HB(3-Bu^{1}pz)\}$ s spt, ${}^{3}J_{H-H} = 6.2$ d, ${}^{3}J_{H-H} = 6.2$ $\{\eta^{3}-HB(3-Bu^{1}pz)\}$	η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃]MgOOCH ₂ CH ₃ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH(CH ₃) ₂ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂	30.6 64.0 30.8 71.6 14.4 30.9 76.5 21.6	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 142$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{I}_{J_{C-H}} = 124$ q, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ d, ${}^{I}_{J_{C-H}} = 126$ q, ${}^{I}_{J_{C-H}} = 126$
$M_{g}OSi(CH_{3})_{3}$ $m_{g}OSi(CH_{3})_{3}$ $m_{g}OOCH_{3}$ $m_{g}OOCH_{2}C(CH_{3})_{3}]_{3}$ $M_{g}OOCH_{2}CH_{3}$	1.45 4.06 1.46 4.32 1.50 1.48 4.50 1.52 1.48	$\{\pi^{3}-HB(3-Bu^{1}pz)\}$ s $\{\pi^{3}-HB(3-Bu^{1}pz)\}$ s $\{\pi^{3}J_{H-H} = 6.8$ $\{\pi^{3}-HB(3-Bu^{1}pz)\}$ s spt. ${}^{3}J_{H-H} = 6.2$ $\{\pi^{3}-HB(3-Bu^{1}pz)\}$ s s	η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₃]MgOOCH ₂ CH ₃ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH ₂ CH ₃ MgOOCH ₂ CH ₃ MgOOCH(CH ₃) ₂ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃ MgOOCH(CH ₃) ₂ MgOOCH(CH ₃) ₂]MgOOCH(CH ₃) ₂]MgOOC(CH ₃) ₃ η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃	30.6 64.0 30.8 71.6 14.4 30.9 76.5 21.6 30.9	q, ${}^{J}_{C-H} = 126$ q, ${}^{I}_{J_{C-H}} = 126$ t, ${}^{J}_{C-H} = 126$ q, ${}^{1}_{J_{C-H}} = 126$ q, ${}^{1}_{J_{C-H}} = 126$ q, ${}^{1}_{J_{C-H}} = 126$ q, ${}^{1}_{J_{C-H}} = 126$

	1H	H NMR			¹³ C NMR	
	assignment	δ (ppm)	coupling (Hz)	assignment	δ (ppm)	coupling (Hz)
			{η ³ -HB(3-	Bu'pz)3MgNHPh		
η ³ -HB	$C_{3}N_{2}H_{2}C(CH_{3})_{3}$	1.36	S	η^{3} -HB[C ₃ N ₂ H ₂ C(CH ₃) ₃] ₃	31.0	q, ${}^{1}J_{C-H} = 126$
MgNH	C_6H_5			MgNHC ₆ H ₅		
2 0-1	н	6.86	m	1 ipso-C	157.7	m
2 m-	·H	7.28	m	2 o-C	129.4	d, ${}^{1}J_{C-H} = 153$
1 p-1	Н	6.70	m			d, ${}^{2}J_{C-H} = 9$
MgNH	C ₆ H ₅	3.64	broad	2 m-C	118.1	d, ${}^{t}J_{C-H} = 150$
-	•••					dd, ${}^{2}J_{C-H} = 8, 14$
				1 p-C	112.6	d, ${}^{1}J_{C-H} = 159$
						t, ${}^{2}J_{C-H} = 7$
			Ja Ju D(3 Dulos			
3 LID(1.45	(η·-ΠΒ(3-ΒΨ.ΡΔ	3 UP(C N U C(CU))	20.0	-17 - 126
η-ΠΒ	$C_3 N_2 \Pi_2 C (C \Pi_3)_{3}$	1.45	3	η^{-} - $\Pi_{1}C_{1}N_{2}\Pi_{2}C(C\Pi_{3})_{3}$	30.9	$q_{1} = 120$
MgUC	$(CH_2)CH_3$	4 20	a (bread)	$M_2OC(CH_2)CH_3$	20.4	$q_{1} - J_{C-H} = 128$
1 1		4.27	$d^2 I = 1 A$	$M_{2}OC(CH_{2})CH_{3}$	161.0	$t_{\rm r}, t_{\rm C-H} = 133$
		4.52	$a_{\rm H-H} = 1.4$	MgOC(CH ₂)CH ₃	101.9	8
MgUC	$(CH_2)CH_3$	2.28	S			
			{n ³ -HB(3-Bu ¹ p	z) ₃ MgOC(=CH ₂)Bu ^t		
n ³ -HB	$C_1N_1H_2C(CH_1)_1$	1.45	s	n^{3} -HBC ₁ N ₂ H ₂ C(CH ₁) ₃	31.0	$q_1 {}^{1}J_{C_{\rm e}H} = 126$
MgOC	$(CH_{3})C(CH_{3})$			MgOC(CH ₃)C(CH ₃)	172.4	s
ĩн	(2) - (3)3	3.84	s	MgOC(CHJ)C(CHJ)	82.1	dd. ${}^{1}J_{C_{\rm o}H} = 149, 156$
1 H		4.42	s	MgOC(CH ₃)C(CH ₃)	37.8	s
MgO($CH_{1}C(CH_{1})$	1.54	s	MgOC(CH ₂)C(CH ₁)	29.7	$q_{1}^{-1}J_{C-H} = 125$
	2/ - (3/3		()			
• •			{η ³ -HB(3-Bu ¹	$pz_{3}Mg(\eta^{1}-O_{2}CCH_{3})$		
η ³ -HB	$C_{3}N_{2}H_{2}C(CH_{3})_{3}$	1.44	S	η^{3} -HB{C ₃ N ₂ H ₂ C(CH ₃) ₃ }	30.6	q, $J_{C-H} = 126$
MgO ₂ O	CCH ₃	2.19	s ^c	MgO ₂ CCH ₃	22.5	$q, {}^{1}J_{C-H} = 128^{c}$
				MgO ₂ CCH ₃	187.0	S
			{n ³ -HB(3-Bu ^l pz), MgCl		
n ³ -HB	$C_{1}N_{2}H_{2}C(CH_{2})_{2}$	1.49	\$	n^3 -HB(C ₁ N ₂ H ₂ C(CH ₂) ₂)	31.0	$a_{1}^{1}J_{C} = 126$
ų 112(031 (21120 (0113) 3)3				2110	4, °C-n 120
. .			{η ³ -HB(3-Bu ^t pz) ₃ MgBr		•
η ³ -HB	$C_3N_2H_2C(CH_3)_3$	1.50	S	η^{3} -HB{C_{3}N_{2}H_{2}C(CH_{3})_{3}}	31.3	q, ${}^{1}J_{C-H} = 126$
			123-HR	(3-Bulnz). Mal		
-3 LID	CNHC(CH))	1.52	(i) - 110	m^3 -HB(C.N.H.C(CH.).)	31.8	$a_{1}^{1}I_{2} = 126$
<i>η</i> -Π D _{	C3142112C(C113)3/3	1.52	5	<i>q</i> -11B(C31(2112C(C113)3)3	51.0	ч, <i>УС-</i> н – 120
			{η ³ -HB(3-	-Bu'pz)3MgNCS		
η ³ -HB	$C_{3}N_{2}H_{2}C(CH_{3})_{3}$	1.34	S	η^{3} -HB{C ₃ N ₂ H ₂ C(<i>C</i> H ₃) ₃ } ₃	30.6	$q, {}^{1}J_{C-H} = 126$
				MgN <i>C</i> S	145.1	S
			5-3-LID(2	Rulaz) MaNCO		
-3 LIDS		1 37	ξη -Π Β (3-	m^3 -HB(C,N,H,C(CH,)).	30.7	$a^{-1}I_{-1} = 126$
<i>η</i> •ΠΒ _{	C3142112C(C/13)3/3	1.57	3	<i>q</i> -11B(C31 (2112C(C113)3)3	50.7	Ч, УС-Н — 120
			{η ³ -HB(3	$3,5-Me_2pz)_3$		
η ³ -HB	$C_3N_2H(CH_3)_2$			η^{3} -HB{C ₃ N ₂ H(CH ₃) ₂ } ₃		•
3 CI	Η3	1.65	S	3 C	12.5	$q_{1}^{1}J_{C-H} = 128$
3 CH	H ₃	2.29	S	3 C	13.0	$q, {}^{1}J_{C-H} = 127$
η ³ -HB	$C_3N_2H(CH_3)_2]_3$	5.66	S	η^{3} -HB[C ₃ N ₂ H(CH ₃) ₂] ₃		
				3 C	105.2	d, ${}^{1}J_{C-H} = 170$
				3 C	143.6	$dq, {}^{2}J_{C-H} = 7$
				3 C	149.7	$da_1 + I_{a_1} = 6$

Table VI (Continued)

^a In C₆D₆ unless stated otherwise. Abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, spt = septet. For brevity, only the tert-butyl resonances of the η^3 -HB(3-Bu'pz)₃ ligand are listed. ^{b13}C NMR spectrum in CDCl₃. ^cAdditional couplings [d, ²J_{C-H} = 6.4 Hz, d ¹J_{C-C} = 53 Hz] are observed for the isotopomer $\{\eta^3$ -HB(3-Bu¹pz)₃ $Mg(\eta^1$ -O₂^{t3}CCH₃).

and studies of the reactions with alkyl halides and O_2 suggest that radical processes are involved. Furthermore, the reactions of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH₃ with ketones, resulting in the selective formation of enolate rather than alkoxide derivatives, demonstrate that the reactivity of the Mg-R bond in these well-defined 4coordinate complexes is not typical of Grignard reagents.

Experimental Details

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum, and Schlenk techniques.²⁵ Solvents were purified and degassed by standard procedures. ¹H, ¹³C, and ¹⁷O NMR spectra were measured on Varian VXR 200, 300, and 400 spectrometers. IR spectra were recorded as Nujol mulls between KBr disks on a Perkin-Elmer 1420 spectrophotometer (cm⁻¹). Mass spectra were obtained on a Nermag R10-10 mass spectrometer using chemical ionization (NH3 or CH4) techniques. Elemental analyses were measured using a Perkin-Elmer 2400 CHN elemental analyzer. $\{\eta^3$ -HB(3,5- $Me_2pz)_3MgR$ and $\{\eta^3-HB(3-Bu^tpz)_3MgR$ were prepared by the litera-

(25) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. ACS Symp. Ser. 1987, 357, 6-23. (b) Burger, B. J.; Bercaw, J. E. ACS Symp. Ser. 1987, 357, 79-97.

ture method.¹ Me₃SiOH was prepared by a modification of a literature method.²⁶ Selected ¹H and ¹³C NMR data are presented in Table VI, and a complete table of data is available as supplementary material.

149.7

dq, ${}^{2}J_{C-H} = 6$

Synthesis of $\{\eta^3$ -HB(3,5-Me₂pz)₃ $\}_2$ Mg. A solution of K{HB(3,5-Me₂pz)₃] (235 mg, 0.70 mmol) in THF (20 mL) was added dropwise to a stirred solution of MgBr₂ (65 mg, 0.35 mmol) in THF (15 mL). The mixture was stirred for 2 h at room temperature and filtered. The filtrate was concentrated to ca. 10 mL and placed at 0 °C, giving colorless crystals of $\{\eta^3$ -HB(3,5-Me₂pz)₃]₂Mg which were isolated by filtration and dried in vacuo (120 mg, 56%). Anal. Calcd for $\{\eta^3$ -HB(3,5-Me₂pz)₃]₂Mg: C, 58.2; H, 7.2; N, 27.2. Found: C, 58.4; H, 7.2; N, 26.9. IR: 2520 (v_{B-H}).

Ligand Redistribution Reactions. Solutions of $\{\eta^3 - HB(3, 5 - Me_2pz)_3\}$ - $MgR(R = CH_3, CH_2CH_3, (CH_2)_3CH_3, CH_2SiMe_3, CH(CH_3)_2, C(C H_3$)₃, CH=CH₂, C₆H₅; ca. 20 mg) in benzene-d₆ were heated at 80-120 °C. The formation of $\{\eta^3$ -HB(3,5-Me₂pz)₃ $\}_2$ Mg over a period of days was

⁽²⁶⁾ A solution of Me₃SiCl (20 mL) in Et₂O (100 mL) was added dropwise to a mixture of ET2O (100 mg) and H2O (100 g) at 0 °C (maintained at pH 7 using phosphate buffer). The ether and aqueous layers were sepa-rated, and the Me₃SiOH was obtained by removing the Et₂O by distillation. We thank Dr. R. Colborn for this advice. George, P. D.; Sommer, L. H.; Whitmore, F. C. J. Am. Chem. Soc. **1953**, 75, 1585–1588.

demonstrated by ¹H NMR spectroscopy. A similar experiment was carried out for the complex $[\eta^3$ -HB(3-Bu'pz)₃]MgCH₃, which showed no reaction after 7 days at 120 °C.

Reaction of $\{\eta^3$ -HB(3-Bu^tpz)₃ $\}$ MgCH₃ with ROH. A solution of $\{\eta^3$ -HB(3-Bu^tpz)₃}MgCH₃ (150 mg, 0.36 mmol) in benzene (20 mL) was treated with C_6H_5OH (40 mg, 0.43 mmol). The mixture was concentrated to ca. 2 mL and placed at 0 °C, giving a white precipitate of ${\eta^3-HB(3-Bu^tpz)_3}MgOC_6H_5$ which was filtered and dried in vacuo (60 mg, 34%). Similar procedures were carried out for the reactions of ${\eta^{3}-HB(3-Bu'pz)_{3}}MgCH_{3}$ with ROH (R = CH₂CH₃, CH(CH₃)₂, CH₂SiMe₃, C(CH₃)₃, SiMe₃). Anal. Calcd for $\{\eta^3$ -HB(3-Bu¹p2)₃]-MgOCH₂CH₃: C, 61.3; H, 8.7; N, 18.7. Found: C, 60.3; H, 8.4; N, 18.2. IR: 2480 (ν_{B-H}). Anal. Calcd for { η^3 -HB(3-Bu^tpz)₃}MgOCH-(CH₃)₂: C, 62.0; H, 8.9; N, 18.1. Found: C, 62.1; H, 8.6; N, 17.7. IR: 2490 (v_{B-H}). Anal. Calcd for {η³-HB(3-Bu¹pz)₃]MgOC(CH₃)₃: C, 62.7; H, 9.1; N, 17.6. Found: C, 62.0; H, 9.1; N, 17.1. IR: 2500 (ν_{B-H}). Anal. Calcd for $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgOC_6H_5: C, 65.0; H, 7.9; N, 16.9. Found: C, 66.0; H, 8.1; N, 16.6. IR: 2510 (v_{B-H}). Anal. Calcd for ${\eta^{3}-HB(3-Bu^{1}pz)_{3}}MgOSiMe_{3}$: C, 58.3; H, 8.8; N, 17.0. Found: C, 59.2; H, 8.0; N, 16.1. IR: 2495 (ν_{B-H}). Anal. Calcd for ${\eta^{3}-HB(3-HB)}$ Bu¹pz)₃MgOCH₂SiMe₃: C, 59.0; H, 8.9; N, 16.5. Found: C, 57.9; H,

8.8; N, 15.8. IR: 2480 (ν_{B-H}). **Reaction of** { η^3 -HB(3-Bu'pz)_3}MgCH₃ with H₂S. A solution of { η^3 -HB(3-Bu'pz)_3]MgCH₃ (150 mg, 0.36 mmol) in benzene (15 mL) was treated with H₂S (1 atm). The mixture was stirred at room temperature for 2 h, concentrated to ca. 2 mL, and cooled giving { η^3 -HB(3-Bu'pz)_3]MgSH as a white solid (90 mg, 57%). Anal. Calcd for { η^3 -HB(3-Bu'pz)_3]MgSH: C, 57.5; H, 8.0; N, 19.2. Found: C, 56.8; H, 7.6; N, 18.4. IR: 2500 (ν_{B-H}).

Reaction of $\{\eta^3$ -HB(3-Bu'pz)_3\}MgCH_3 with CH₃SH. A solution of $\{\eta^3$ -HB(3-Bu'pz)_3]MgCH_3 (40 mg, 0.1 mmol) in benzene (1 mL) was treated with CH₃SH (1 atm) and left for 10 min at room temperature. The volatile components were removed under reduced pressure, giving $\{\eta^3$ -HB(3-Bu'pz)_3\}MgSCH_3 as a white solid (40 mg, 93%). Anal. Calcd for $\{\eta^3$ -HB(3-Bu'pz)_3]MgSCH_3: C, 58.4; H, 8.2; N, 18.6. Found: C, 57.9; H, 8.4; N, 17.9. IR: 2480 (ν_{B-H}).

Reaction of $\{\eta^3$ -HB(3-Bu^tpz)_3\}MgCH₃ with X₂ (X = Cl, Br, I). A solution of $\{\eta^3$ -HB(3-Bu'pz)_3\}MgCH_3 (100 mg, 0.24 mmol) in benzene (15 mL) was titrated with a solution of X_2 (X = Br, I) in C₆H₆ until the solution became pale yellow. The solution was concentrated to ca. 2 mL, and the solid that separated was filtered. The solid was redissolved in benzene, filtered, and concentrated to ca. 2 mL, giving $\{\eta^3$ -HB(3-Bu^tpz)₃|MgX which was isolated by filtration and dried in vacuo (ca. 50%). The reaction between $\{\eta^3$ -HB(3-Bu'pz)_3]MgCH_3 and Cl₂ was monitored by ¹H NMR spectroscopy. A solution of $\{\eta^3$ -HB(3- $Bu^{t}pz_{3}MgCH_{3}$ (20 mg, 0.05 mmol) in benzene- d_{6} (0.7 mL) was treated with Cl₂ (1 atm). ¹H NMR spectroscopy demonstrated that $\{\eta^3$ -HB(3-Bu¹pz)₃MgCl was formed quantitatively after 10 min at room temperature. However, $\{\eta^3$ -HB(3-Bu¹pz)_3\}MgCl is more conveniently prepared by the method described below. Anal. Calcd for $\{\eta^3$ -HB(3-Bu¹pz)_3\}-MgBr: C, 52.0; H, 7.1; N, 17.3. Found: C, 51.2; H, 6.8; N, 15.6. IR: 2520 (ν_{B-H}). MS: m/e 487 (M⁺ + 1). Anal. Calcd for { η^{3} -HB(3-Bu'pz)3MgI: C, 47.4; H, 6.4; N, 15.8. Found: C, 49.1; H, 6.3; N, 14.4. IR: 2500 (ν_{B-H}). MS: m/e 533 (M⁺ + 1).

Reaction of Bu'MgCl with Tl{ η^3 -HB(3-Bu'pz)₃]. A solution of Bu'-MgCl (1.7 mL, 3.4 mmol, 2.0 M in Et₂O) was added dropwise to a solution of Tl{ η^3 -HB(3-Bu'pz)₃] (2.0 g, 3.4 mmol) in THF (60 mL), resulting in the immediate formation of a black deposit of Tl metal. The mixture was stirred for 20 min at room temperature and filtered. The filtrate was concentrated to ca. 15 mL and placed at 0 °C to give a crop of colorless crystals. The crystals of { η^3 -HB(3-Bu'pz)₃]MgCl were isolated by filtration and dried in vacuo (0.63 g, 42%). Anal. Calcd for { η^3 -HB(3-Bu'pz)₃]MgCl: C, 57.2; H, 7.8; N, 19.1. Found: C, 57.0; H, 7.9; N, 19.0. IR: 2520 (ν_{B-H}). MS: m/e 441 (M⁺ + 1).

Reaction of $\{\eta^3$ -**HB**(3-**Bu'pz**)_3]**MgCH**₃ with HCl. A solution of $\{\eta^3$ -HB(3-Bu'pz)_3]MgCH_3 (20 mg, 0.05 mmol) in benzene- d_6 (0.7 mL) was treated with HCl (1 atm) and left at room temperature for 30 min. The products were identified as $\{\eta^3$ -HB(3-Bu'pz)_3]MgCl and CH₄ by ¹H NMR spectroscopy.

Reaction of $\{\eta^3$ -**HB**(3-**Bu**ⁱ**pz**)₃]**Mg**CH₃ with C₆H₃NH₂. A solution of $\{\eta^3$ -HB(3-Buⁱ**pz**)_3]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with C₆H₃NH₂ (9 μ L, 0.1 mmol) and heated at 60 °C for 1 day. The volatile components were removed under reduced pressure, giving $\{\eta^3$ -HB(3-Buⁱ**pz**)_3]MgNHPh (ca. 40 mg, 85%). Anal. Calcd for $\{\eta^3$ -HB(3-Buⁱ**pz**)_3]MgNHPh: C, 65.2; H, 8.1; N, 19.7. Found: C, 64.3; H, 7.8; N, 20.4. IR: 2510 (ν _{B-H}).

Reaction of $\{\eta^3$ -HB(3-Bu[†]pz)₃]MgCH₃ with RC=CH. A solution of $\{\eta^3$ -HB(3-Bu[†]pz)₃]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with RC=CH (R = C₆H₅, SiMe₃; 0.1 mmol) and heated at 110 °C for 5 h. The volatile components were removed under reduced

pressure, giving $[\eta^3$ -HB(3-Bu^tpz)₃]MgC₂R (ca. 90%). Anal. Calcd for $[\eta^3$ -HB(3-Bu^tpz)₃]MgC₂C₆H₅: C, 68.7; H, 7.8; N, 16.6. Found: C, 67.6; H, 7.9; N, 15.7. IR: 2510 (ν_{B-H}). Anal. Calcd for $[\eta^3$ -HB(3-Bu^tpz)₃]MgC₂SiMe₃: C, 62.1; H, 8.6; N, 16.7. Found: C, 61.1; H, 7.3; N, 16.1. IR: 2480 (ν_{B-H}).

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ with Me₃SiX (X = Cl, Br, I, NCO, NCS). A solution of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with Me₃SiX (X = Cl, Br, I, NCO, NCS; 0.1 mmol). Although Me₃SiI reacted rapidly (ca. 5 h at room temperature), the other derivatives required heating at ca. 120 °C for 2 weeks for completion. The volatile components were removed under reduced pressure, giving $\{\eta^3$ -HB(3-Buⁱpz)₃]MgX (ca. 90%). Anal. Calcd for $\{\eta^3$ -HB(3-Buⁱpz)₃]MgNCS: C, 57.0; H, 7.4; N, 21.1. Found: C, 56.1; H, 7.5; N, 20.8. IR: 2520 (ν_{B-H}), 2060 (ν_{NCS}). MS: m/e 464 (M⁺ + 1). Anal. Calcd for $[\eta^3$ -HB(3-Buⁱpz)₃]MgNCO: C, 59.0; H, 7.7; N, 21.9. Found: C, 57.8; H, 8.0; N, 21.1. IR: 2510 (ν_{B-H}), 2230 (ν_{NCO}). MS: m/e 448 (M⁺ + 1).

Reaction of $[\eta^3$ -HB(3-Bu'pz)_3]MgCH_3 with RX. A solution of $[\eta^3$ -HB(3-Bu'pz)_3MgCH_3 (20 mg, 0.05 mmol) in benzene- d_6 (0.7 mL) was treated with RX (RX = CH_3I, CH_3CH_2I, (CH_3)_2CHI, (CH_3)_3CI, C_6-H_5CH_2CI, C_6H_5CH_2Br, C_6H_5CH_2I) and heated at 100-140 °C. The reactions were monitored by ¹H NMR spectroscopy which demonstrated the formation of $\{\eta^3$ -HB(3-Bu'pz)_3]MgX over a period of days. For the reactions with $C_6H_5CH_2X$ (X = Cl, Br, I) the relative amounts of PhCH₂CH₂Ph and PhCH₂CH₃ in the products were measured by ¹H NMR spectroscopy.

Alkyl Exchange Experiments. A solution of $\{\eta^3$ -HB(3-Bu¹p2)₃]MgCH₃ (8.4 mg, 0.02 mmol) in benzene- d_6 (0.7 mL) was treated with ¹³CH₃I (2.5 μ L, 0.04 mmol) and heated at 140 °C. Evidence for the formation of the alkyl exchange product $\{\eta^3$ -HB(3-Bu¹p2)₃]Mg¹³CH₃ during the course of the reaction was provided by the observation of a doublet (${}^{1}J_{C-H}$ = 108 Hz) in the ¹H NMR spectrum at δ -0.05 due to the magnesium methyl group of $\{\eta^3$ -HB(3-Bu¹p2)₃]Mg¹³CH₃. Similarly, a solution of $\{\eta^3$ -HB(3-Bu¹p2)₃]MgCH₂CH₃ (25 mg, 0.06 mmol) in benzene- d_6 (0.7 mL) was treated with CH₃I (5 μ L, 0.08 mmol) and heated at 110 °C. ¹H NMR spectroscopy demonstrated the formation of $\{\eta^3$ -HB(3-Bu¹p2)₃]MgCH₃ during the course of the reaction.

Ring Opening of Cyclopropylmethyl Bromide. A solution of $\{\eta^2$ -HB-(3-Bu¹pz)₃]MgCH₃ (10 mg, 0.02 mmol) in benzene-d₆ (0.7 mL) was treated with c-C₃H₅CH₂Br (4 μ L, 0.04 mmol) and heated at 110 °C. The reaction was monitored by ¹H NMR spectroscopy. Over a period of 5 days the c-C₃H₅CH₂Br had completely isomerized to the ring-opened isomer CH₂=CHCH₂CH₂Br, while only ca. 25% $[\eta^3$ -HB(3-Bu¹pz)₃]-MgBr had been formed. Complete conversion to $[\eta^3$ -HB(3-Bu¹pz)₃]MgBr required heating at 110 °C for 1 month.

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ with CH₃SSCH₃. A solution of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ (20 mg, 0.05 mmol) in benzene- d_6 (0.7 mL) was treated with CH₃SSCH₃ (5 μ L, 0.06 mmol) and heated at 140 °C for 2 weeks. $\{\eta^3$ -HB(3-Buⁱpz)₃]MgSCH₃ and (CH₃)₂S were identified as the products by ¹H NMR spectroscopy.

Reaction of $\{\eta^3$ -HB(3-Bu'pz)₃]MgCH₃ with CO₂. A solution of $\{\eta^3$ -HB(3-Bu'pz)₃]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with CO₂ (1 atm) and heated at 80 °C for 4 h. The volatile components were removed under reduced pressure, giving $\{\eta^3$ -HB(3-Bu'pz)₃]Mg(\eta^1-O_2CCH₃) as a white solid (40 mg, 91%). Anal. Calcd for $\{\eta^3$ -HB-(3-Bu'pz)₃]Mg(\eta^1-O_2CCH₃): C, 59.5; H, 8.0; N, 18.1. Found: C, 58.6; H, 7.9; N, 17.4. IR: 2480 (ν_{B-H}), 1555 (ν_{CO_2}) [1515 (ν_{U3CO_2})].

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ with RCOCH₃ ($\mathbf{R} \doteq CH_3$, C-(CH₃)₃). A solution of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with RCOCH₃ (0.1 mmol) and left at room temperature ($\mathbf{R} = CH_3$, 5 min; $\mathbf{R} = Bu^i$, 5 h). The volatile components were removed under reduced pressure, giving $\{\eta^3$ -HB(3-Buⁱpz)₃]Mg(η^1 -OC(=CH₂)R} as a white solid in quantitative (by ¹H NMR) yield. Anal. Calcd for $\{\eta^3$ -HB(3-Buⁱpz)₃]Mg(η^1 -OC(=CH₂)CH₃]: C, 62.3; H, 8.5; N, 18.2. Found: C, 59.3; H, 8.3; N, 16.4. IR: 2490 (ν_{B-H}), 1620 ($\nu_{C=C}$). Anal. Calcd for $\{\eta^3$ -HB(3-Buⁱpz)₃]Mg(η^1 -OC(=CH₂)Buⁱ]: C, 64.2; H, 9.0; N, 16.7. Found: C, 63.5; H, 8.7; N, 17.4. IR: 2505 (ν_{B-H}), 1615 ($\nu_{C=C}$).

Reaction of $[\eta^3$ -HB(3-Buⁱpz)₃]MgR with O₂. A solution of $[\eta^3$ -HB(3-Buⁱpz)₃]MgR (R = CH₂CH₃, CH(CH₃)₂, C(CH₃)₃; ca. 40 mg, ca. 0.1 mmol) in benzene (1 mL) was treated with O₂ (1 atm). The volatile components were removed under reduced pressure after 10 min, giving $[\eta^3$ -HB(3-Buⁱpz)₃]MgO₂R in quantitative yield (by ¹H NMR). The reaction of the methyl derivative $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ proceeded similarly with the exception that the reaction required ca. 2 days to go to completion and was accompanied by ca. 25% decomposition. Anal. Calcd for $[\eta^3$ -HB(3-Buⁱpz)₃]MgO₂Buⁱ: C, 60.7; H, 8.8; N, 17.0. Found: C, 60.3; H, 8.6; N, 17.2. IR: 2491 (ν_{B-H}), 889 (ν_{O-O}) [866 ($\nu_{18O-18O}$)], 660 (ν_{Mg-O}) [618 (ν_{Mg-16O})]. Anal. Calcd for $[\eta^3$ -HB(3-Buⁱpz)₃]MgO₂Prⁱ: C, 60.0; H, 8.6; N, 17.5. Found: C, 56.7; H, 8.4; N, 16.6. IR: 2485

Galvinoxyl Inhibition Experiment. A solution of $\{\eta^3$ -HB(3-Bu¹pz)₃]-MgCH₃ (0.7 mL, 34 mM in benzene-d₆) was placed in two NMR tubes, and a solution of galvinoxyl (0.1 mL, 5 mM in benzene-d₆) was added to one of the tubes. Both NMR tubes were exposed to the same O₂ source (1 atm), and the reactions were monitored by ¹H NMR spectroscopy. After 35 h at room temperature the reaction in the absence of galvinoxyl had proceeded to completion, whereas the reaction in the presence of galvinoxyl had proceeded to only ~60% completion.

Crossover Experiment. A solution of a mixture of $\{\eta^3$ -HB(3-Bu^tpz)₃]MgCH₃ and $\{\eta^3$ -HB(3,5-Me₂pz)₃]MgC(CH₃)₃ (0.7:1.0 molar ratio) in benzene-d₆ (0.7 mL) was treated with O₂ (1 atm), and the reaction was monitored by ¹H NMR spectroscopy. After 5 min at room temperature the crossover product $\{\eta^3$ -HB(3-Bu^tpz)₃]MgO₂C(CH₃)₃ was one of the major species present.

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ with BuⁱO₂H. A solution of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCH₃ (40 mg, 0.1 mmol) in benzene (1 mL) was treated with BuⁱO₂H (34 μ L, 3.0 M solution in 2,2,4-trimethylpentane, 0.1 mmol). The volatile components were removed under reduced pressure after 10 min at room temperature, giving η^3 -HB(3-Buⁱpz)₃]-MgO₂Buⁱ as a white solid (40 mg, 85%).

Reaction of $\{\eta^3$ -HB(3-Bu¹pz)₃]MgCH₂SiMe₃ with O₂. A solution of $\{\eta^3$ -HB(3-Bu¹pz)_3\}MgCH₂SiMe₃ (ca. 20 mg, 0.04 mmol) in benzene- d_6 (0.7 mL) was treated with O₂ (1 atm), and the reaction was monitored by ¹H NMR spectroscopy. After 2 days at room temperature the major product was $\{\eta^3$ -HB(3-Bu¹pz)_3\}MgOSiMe₃ (ca. 90%). Formaldehyde was also present.

Crossover Experiment. A solution of a mixture of $\{\eta^3$ -HB(3-Bu'pz)_3]MgC(CH_3)_3 and $\{\eta^3$ -HB(3,5-Me_2pz)_3]MgCH_2SiMe_3 (0.8:1 molar ratio) in benzene- d_6 (0.7 mL) was treated with O₂ (1 atm), and the reaction was monitored by ¹H NMR spectroscopy. After 2 h at room temperature the main products were $\{\eta^3$ -HB(3-Bu'pz)_3]MgO_2C(CH_3)_3 and the crossover product $\{\eta^3$ -HB(3-Bu'pz)_3]MgOSiMe_3.

Reaction of $\{\eta^3$ -HB(3,5-Me₂pz)₃]MgR with O₂. A solution of $\{\eta^3$ -HB-(3,5-Me₂pz)₃]MgR (R = CH(CH₃)₂, C(CH₃)₂; 0.05 mmol) in benzene-d₆ (0.7 mL) was treated with O₂ (1 atm). The reactions were monitored by ¹H NMR spectroscopy. After 30 min a mixture of products was obtained, of which $\{\eta^3$ -HB(3,5-Me₂pz)₃]₂Mg was the major component (ca. 40%).

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgO₂Prⁱ with $\{\eta^3$ -HB(3-Buⁱpz)₃]MgPrⁱ. $\{\eta^3$ -HB(3-Buⁱpz)₃]MgPrⁱ (ca. 20 mg, 0.04 mmol) was added to a solution of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgO₂Prⁱ (ca. 20 mg, 0.04 mmol) in benzene-d₆ (0.7 mL). No immediate reaction was observed by ¹H NMR spectroscopy. The sample was heated overnight at 80 °C, giving $\{\eta^3$ -HB(3-Buⁱpz)₃]-MgOPrⁱ, as demonstrated by ¹H NMR spectroscopy.

Reaction of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgO₂R with PPh₃. PPh₃ (ca. 15 mg, 0.06 mmol) was added to solutions of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgO₂R (R = CH₃, CH₂CH₃, CH(CH₃)₂, C(CH₃)₃; ca. 0.05 mmol) in benzene-d₆ (0.7 mL), and the sample was monitored by ¹H NMR spectroscopy. In each case the products $\{\eta^3$ -HB(3-Buⁱpz)₃]MgOR and Ph₃PO were formed within 2 h at room temperature.

X-ray Structure Determination of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCl. Crystal data, data collection, and refinement parameters are summarized in Table VII. A single crystal of $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCl was mounted in a glass capillary and placed on a Nicolet R3m diffractometer. The unit cell was determined by the automatic indexing of 25 centered reflections and confirmed by examination of the axial photographs. Intensity data were collected using graphite-monochromated Mo K α X-radiation ($\lambda = 0.71073$ Å). Check reflections were measured every 100 reflections, and the data were scaled accordingly and corrected for Lorentz, polarization, and absorption effects. The structure was solved using direct methods and standard difference map techniques on a Data General NOVA 4 computer using SHELXTL.²⁷ Systematic absences were consistent with the space groups *Pnma* or *Pna2*₁, but consideration of the *E*-value statistics suggested the choice *Pnma* (No. 62). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were

Table VII. Crystal and Intensity Collection Data for $\{\eta^3$ -HB(3-Buⁱpz)₃]MgCl and $\{\eta^3$ -HB(3,5-Me₂pz)₃]₂Mg

	${\eta^3}$ -HB(3-Bu ¹ pz) ₃ MgCl	${\eta^{3}-HB(3,5-Me_{2}pz)_{3}}_{2}Mg$
formula formula weight lattice cell constants	$C_{21}H_{34}N_6BMgCl441.2orthorhombica = 16.048 (7) Åb = 16.006$ (3) Å c = 9.840 (1) Å	$C_{30}H_{44}N_{12}B_2Mg$ 618.7 triclinic a = 8.837 (3) Å b = 10.223 (3) Å c = 10.773 (1) Å $\alpha = 63.92$ (3)° $\beta = 85.24$ (2)° $\gamma = 79.87$ (2)°
Z space group radiation $(\lambda, \mathbf{\hat{A}})$ ρ (calcd) μ (Mo K α) goodness of fit R R _w	$V = 2527 (1) Å^{3}$ 4 Pnma (No. 62) Mo K α (0.71073) 1.16 g cm ⁻³ 2.0 cm ⁻¹ 1.450 0.0517 0.0590	$V = 860.4 (4) Å^{3}$ $PI (No. 2)$ Mo K α (0.71073) 1.19 g cm^{-3} 1.0 cm^{-1} 1.630 0.0579 0.0765

located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $(d_{C-H} = 0.96 \text{ Å}; U_{so}(H) = 1.2U_{iso}(C))$. Block-diagonal least-squares refinement converged to R = 0.0517 ($R_w = 0.0590$). Selected bond distances and angles are listed in Tables 111 and 1V.

X-ray Structure Determination of $\{\eta^3$ -HB(3,5-Me₂pz)₃/₂Mg. Crystal data, data collection, and refinement parameters are summarized in Table VII, and general procedures are as for $\{\eta^3$ -HB(3-Buⁱpz)₃/MgCl. Systematic absences were consistent with the space groups P1 or P1, but successful solution was found in P1 (No. 2). Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions ($d_{C-H} = 0.96$ Å; $U_{iso}(H) = 1.2U_{iso}(C)$). Block-diagonal least-squares refinement converged to R = 0.0579 ($R_w = 0.0765$). Selected bond distances and angles are listed in Tables I and II.

Acknowledgment is made to the National Science Foundation (Grant CHE 90-07512) and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. G.P. is the recipient of an Alfred P. Sloan Research Fellowship (1991–1993) and a Camille and Henry Dreyfus Teacher-Scholar Award (1991–1996). We thank two of the reviewers for very helpful comments.

Registry No. A (R = OPh), 122519-78-2; A (R = OEt), 125950-47-2; A (R = OPr-i), 125950-48-3; A (R = OBu-t), 122519-77-1; A (R = OTMS), 131931-53-8; A (R = OCH₂TMS), 137743-91-0; A (R = SH), 122519-79-3; A (R = SMe), 137743-92-1; A (R = Br), 122519-81-7; A (R = I), 122519-74-8; A (R = NHPh), 137743-93-2; A $(R = C_2Ph)$, 137743-94-3; A (R = C_2 TMS), 137743-95-4; A (R = NCS), 137743-96-5; A (R = NCO), 137743-97-6; A (R = OAc), 122519-80-6; A (R = $OC(CH_3)$ =CH₂, 122519-76-0; A (R = $OC(=CH_2)C(CH_3)_3$, 137743-98-7; A (R = O_2Bu -t), 125950-45-0; A (R = O_2Pr -i), 125950-44-9; A (R = O_2Et), 125950-43-8; A (R = O_2Me), 125950-42-7; A (R 82-8; A (R = Pr-i), 125950-40-5; A (R = Bu-t), 125950-41-6; B (R = Me), 122539-41-7; B (R = Et), 130950-97-9; B (R = Bu), 130949-85-8; B (R = CH₂TMS), 131931-52-7; B (R = Pr-*i*), 130949-86-9; B (R = Bu-t), 130949-87-0; B (R = CH=CH₂), 130949-88-1; B (R = Ph), 130949-89-2; $\{\eta^3$ -HB(3,5-Me₂pz)₃ $\}_2$ Mg, 130949-90-5; c-C₃H₅CH₂Br, 7051-34-5; CH₂=CHCH₂CH₂Br, 5162-44-7.

Supplementary Material Available: Listings of crystal and intensity collection data, atomic coordinates, bond distances and angles, and anisotropic displacement parameters, ORTEP drawings for $\{\eta^3$ -HB(3-Bu'pz)_3\}MgCl and $\{\eta^3$ -HB(3,5-Me_2pz)_3\}_2Mg, and complete tables of spectroscopic data (29 pages); listings of observed and calculated structure factors (22 pages). Ordering information is given on any current masthead page.

⁽²⁷⁾ Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Federal Republic of Germany, 1981.